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Introduction

•M parallel amplify-and-forward relays:

–Frequency-selective multipath channels

–OFDM signal, all multipaths within the cyclic prefix

Source Destination

Amplify-and-forward relays

•Benefits from spatial diversity by coherent combining,

i.e., by inducing appropriate phase shifts in the relays

–Previously considered with the half-duplex mode

∗Symbol-by-symbol forwarding

∗Co-phasing is trivial in the frequency domain

→ Suitable for mobile relays, user cooperation

–The full-duplex mode is more spectrally efficient

∗Sample-by-sample forwarding within the cyclic prefix

∗Requires countermeasures against loop interference

→ Suitable for fixed, infrastructure-based relays

∗Frequency domain processing is not possible

–Can co-phasing be implemented also in full-duplex relays?

System model

•Amplification with linear filters Bm(ω) in the relays:

Rm(ω) = HSm(ω)X(ω) + Nm(ω)

Tm(ω) = Bm(ω)Rm(ω)

•The destination receives a superposition of signals:

Y (ω) =



HSD(ω) +
M∑
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HmD(ω)Bm(ω)HSm(ω)
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+
M∑

m=1

HmD(ω)Bm(ω)Nm(ω) + ND(ω)

• Incoherent relaying with Bm(ω) = 1

•Diversity gain by designing each Bm(ω) such that

|H(ω)| ≈ |HSD(ω)| +
M∑

m=1

|HSm(ω)| |HmD(ω)|

–Desired phase response at the kth subcarrier (1 ≤ k ≤ K):

Θm(ωk) = ∠HSD(ωk) − ∠HSm(ωk)HmD(ωk)

–Power allocation between the subcarriers is not considered

⇒ Uniform gain for the subcarriers is preferred

Filter design

•We need to design

Bm(ω) =
[

1, e−jω, . . . , e−jNω
]

︸ ︷︷ ︸

=cT (ω)

[bm[0], bm[1], . . . , bm[N ]]T
︸ ︷︷ ︸

=bm

that approximates the response Dm(ωk) = ejΘm(ωk)

→ Allpass filters: controllable phase and uniform gain

•FIR approximation of the ideal IIR allpass structure

–Fixed-length impulse response, stability

–No strict requirements for phase response or flat magnitude

→We can apply the design method of complex FIR eigenfilters

•The error function by modifying the LS criterion:

Em =
K∑

k=1
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is quadratic with

Qm =
K∑

k=1




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⇒ Rayleigh’s principle: Em is minimized by

selecting bm as the eigenvector corresponding to the

smallest eigenvalue of Qm

–Example: Combining co-

herently transmission of a

single relay with the direct

transmission
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Simulation results

•Outage probability simulations

–SR and RD channels: 4 uniform Rayleigh-fading taps

–SD channel: 15 uniform Rayleigh-fading taps, SNR is 6 dB

below SR and RD link SNRs

–K = 500, N = 30

0 5 10 15 20 25 30
10

−3

10
−2

10
−1

10
0

SR and RD link SNR [dB]

P
ou

t(5
 d

B
)

Direct link
1 relay, no direct link
1 relay, no co−phasing
1 relay with co−phasing
1 relay with ideal co−phasing
2 relays, no co−phasing
2 relays with co−phasing
2 relays with ideal co−phasing
3 relays, no co−phasing
3 relays with co−phasing
3 relays with ideal co−phasing


