Recent Advances in Full-Duplex Relaying

Taneli Riihonen
Department of Signal Processing and Acoustics
Center of Excellence in Smart Radios and Wireless Research
Aalto University School of Electrical Engineering, Finland

Session B2, April 24, 2013
XXXIII Finnish URSI Convention on Radio Science
Presenter: Taneli Riihonen

- Master of Science, Helsinki University of Technology (TKK), Finland, 2006
 - Received the McKinsey Award for the best graduating student (only one among all 1007 M.Sc. degrees completed at TKK during that year)
 - Currently wrapping up D.Sc. thesis at Aalto University
- Productive (co-)author in scientific publications
 - 15/38 published journal/conference papers, some under review
- Dedicated (co-)supervisor for younger students
 - 8 M.Sc. theses completed, 1 currently in progress
 - 2 D.Sc. theses in progress (and collaboration with many others as a co-author)
- Diligent and punctual reviewing service for the community
 - Regularly since 2008: so far ~ 200 papers (~ 1/1 journals/confs.)
 - Exemplary Reviewer 2012 for IEEE Communications Letters
- Looking for a postdoc position abroad to grow academically and personally
Agenda

• Overview of the presenter’s work on full-duplex relaying in 2008–2011 which constitutes \(\sim \frac{1}{3} \) of his upcoming dissertation

• Tutorial to essential aspects that need to be considered when introducing full-duplex operation into multihop relaying systems

• The basis for seminal research: loopback self-interference!
 ▶ Mitigation techniques and evaluation of their performance
 ▶ The feasibility of full-duplex relaying in the presence of residual self-interference, i.e., comparison to half duplex
 ▶ Merging full duplex with MIMO and OFDM techniques

• The results were originally published in multiple conference and journal papers [1]–[12] (see the next two slides)
References (published in 2009)

References (published in 2010–2011)

Introduction
Old Terminology

• Recommendation ITU-R V.662-2 (1993), or Wikipedia:

 half duplex — “Designating or pertaining to a method of operation in which information can be transmitted in either direction, but not simultaneously, between two points.”

 full duplex — “Designating or pertaining to a mode of operation by which information can be transmitted in both directions simultaneously between two points.”

• Ambiguity problems

 ▶ What is the level of abstraction, e.g., considered OSI layer?
 ▶ May the two directions use different transmission media?
 ▶ What if communication involves more than two points?

... and even ITU itself characterizes the terms as “deprecated”!
Herein, we shall adopt the following revised definitions:

half duplex — “Designating or pertaining to a mode of operation by which information can be transmitted to and from a point in two directions, but not simultaneously on the same physical channel.”

full duplex — “Designating or pertaining to a mode of operation by which information can be transmitted to and from a point in two directions simultaneously on the same physical channel.”

Unambiguous and suitable for discussing modern topics

- Focus on the operation mode of any transceiver instead of bidirectional communication between exactly two points
- Physical-layer perspective creates a link to spectral efficiency

... and it is not only me who already understands the terms like this
Hot Emerging Topic: Full-Duplex Wireless

- Systems where some node(s) operate in the full-duplex mode
- Sometimes descriptively referred to as single-frequency “simultaneous transmit and receive” (STAR)
- Progressive physical/link-layer frequency-reuse concept
 = up to double spectral efficiency at a system level, if the significant technical problem of self-interference is tackled
- Transmission and reception should use the band for the same amount of time to make the most of full duplex
 ▶ (a)symmetry of traffic pattern, i.e., requested rates in the two simultaneous directions
 ▶ (a)symmetry of channel quality, i.e., achieved rates in the two simultaneous directions
Full-Duplex Radio Transceivers

- Basic building blocks for more complex networks
- The benefits go beyond the physical layer!
 - e.g., simultaneous spectrum sensing and transmission
- Will single-array (or -antenna) full-duplex transceivers be viable some day?
 - Our study is not limited to the dual-array case although it is assumed
Full-Duplex Communication Scenarios

1) Multihop relay link
 - Symmetric traffic
 - Asymmetric channels
 - Direct link may be useful

2) Bidirectional communication link between two terminals
 - Asymmetric traffic (typically)
 - Symmetric channels (roughly)

3) Simultaneous down- and uplink for two half-duplex users
 - Asymmetric traffic
 - Asymmetric channels
 - Inter-user interference!
Full-Duplex Relaying

- Multihop relay link
 - Symmetric traffic
 - Asymmetric channels
 - Direct link may be useful

Agenda

- Tutorial to essential aspects that need to be considered when introducing full-duplex operation into multihop relaying systems
- The basis for seminal research: *loopback self-interference*!
 - Mitigation techniques and evaluation of their performance
 - The feasibility of full-duplex relaying in the presence of *residual* self-interference, i.e., comparison to half duplex
 - Merging full duplex with MIMO and OFDM techniques
Full-Duplex Relaying
The general purpose of a \textit{relay node} is to forward signals from a source transmitter to a destination receiver.

- Other network topologies are also possible, e.g., with multiple hops or parallel relays.
- Common protocols: amplify-and-forward (AF), decode-and-forward (DF).

- \textit{Full-duplex relays} exploit STAR such that source–relay and relay–destination links share one physical channel.
 - can be more sophisticated than simple on-channel repeaters.
Two different applications for relays:

a) *coverage extension* where the relay is deployed because the direct link is weak

b) *diversity improvement* where transmission from both the relay and the source is strong (on average) at the destination

The former is more potential application for full-duplex relays

- Half-duplex relaying can offer maximum diversity gain
- Rate/SNR gain of full-duplex relaying becomes marginal with a strong direct link: simple switching works well
Inherent Symmetry: Advantage for Full Duplex

- Full duplex can ideally render up to double spectral efficiency when compared to conventional half-duplex operation
 - Largest gains are achieved when simultaneous transmissions occupy the channel for the same amount of time
- Relay links are good candidates for adopting the full-duplex mode because their traffic pattern is inherently symmetric:
 - Equal *requested* source–relay and relay–destination data rates to avoid data overflow or underflow in the relay
 - Unequal *achieved* data rates due to channel imbalance
Mitigation of Loopback Self-interference
Mitigation of Loopback Self-interference (Refs)

- The following discussion mainly originates from

- Related results are available also in conference papers:
 [6], [8], [9], [11]

- Measurement data on prototype antenna arrays by courtesy of colleagues from Department of Radio Science and Engineering:
Loopback Self-interference

- Full-duplex operation is possible only after tackling a significant technical challenge: unavoidable self-interference
 - Huge difference in power levels (interference vs. desired signal)
- Full duplex is adopted first for fixed infrastructure nodes and later (maybe) for small portable, or even handheld, radios
 - Initially, the concept of full-duplex relaying is different from cooperative communication among mobile nodes where time-division half-duplex operation is the baseline assumption
- Next: self-interference mitigation techniques
Passive Physical Isolation

- State-of-the-art devices require two separate antenna arrays: one for receiving and the other for transmitting
 - Mainly antenna design and placement problems: directivity, back-to-back coupling, distance, obstacles
 - But using two arrays is useful for relaying in general since the source and the destination are located at different directions
- In (future?) single-array devices, all physical isolation is provided by a circulator: mainly an electronics design problem
- Next: measured physical isolation with prototype antenna arrays
Experimental Antenna Arrays for Full-Duplex MIMO Relay*

- Design goals:
 1. Compact size but high isolation
 2. 2.6GHz ± 100MHz operation band
 3. Multiple Rx and Tx antenna elements
- Building and measuring 4×4 array prototype

*Further details are provided in [H+]:
Channel Measurement Campaign for Outdoor-to-Indoor Relaying Scenarios

Compact array configuration
- Arrays attached side-by-side (2cm)
- Small box like a Wi-Fi router
- Several positions next to windows

Separate array configuration
- Four Tx antenna orientations
- LOS: Tx in the same room as Rx
- NLOS: Tx in the adjacent corridor

Average Physical Isolation

- For compact array configuration, measured isolation is 36.2 dB.
- For separate array configuration, isolation is directly proportional to antenna separation (2–3 dB/m).

![Diagram showing isolation measurements]

- 20 dB isolation from window glass for separate array configuration.
- Mere physical isolation may not be sufficient which gives motivation for active mitigation by signal processing.
Objective for Active Mitigation

- Transparent minimization of self-interference: the relay protocol can operate as in the half-duplex mode but at double symbol rate
 - Mitigation becomes separated from the protocol design and the schemes are applicable with all kinds of protocols
Active Mitigation

Two main techniques for active self-interference mitigation:

- **Cancellation**: time-domain filtering in feedback path
- **Suppression**: spatial-domain filtering in feedforward path

Both schemes could ideally eliminate all self-interference.

Cancellation is a rather straightforward task while suppression can be implemented in various ways.
Imperfect Side Information

- In practice, self-interference cannot be perfectly eliminated
 - Channel estimation error in filter design
 - Transmit-side noise due to non-ideal electronics
 (the actual transmitted signal is not known)
- Sufficient physical isolation and analog pre-cancellation are also required to cope with limited dynamic range at the receive side
Spatial-Domain Suppression

- Next: evaluating the main variations of suppression
 - antenna selection (AS)
 - beam selection (BS)
 - null-space projection (NSP)
 - minimum mean square error (MMSE) filtering
- In some cases, it may be beneficial to combine time-domain cancellation with spatial-domain suppression
Antenna vs. Beam Selection

- Ideal side information; four receive and transmit antennas
- AS improves isolation significantly only in the single-stream case
 - BS is reduced to null-space projection (NSP) and eliminates self-interference completely if less than five streams are used
Rank of Loopback Channel

![Graph showing the rank of loopback channel]

- Ideal side information; three receive and transmit antennas
- Spatial-domain suppression can benefit from low channel rank
 - Beam selection (BS) directs the self-interference energy to the weakest eigenmodes which include the null space
- Time-domain cancellation (not shown) would not be affected at all
Imperfect Side Information

- Additional isolation from BS is limited with ideal side information
 - Imperfect side information determines the additional isolation achieved with NSP or time-domain cancellation (TDC)
- NSP can be made immune to transmit-side noise
Cancellation vs. Suppression

![Graph showing Cancellation vs. Suppression](image)

- Loopback channel rank defines which scheme is preferable.
- The combination of TDC and suppression offers better performance than either alone, except when rank-deficient loopback channel enables the usage of NSP.
Transmit Power Adaptation
Transmit Power Adaptation (Refs)

- The following discussion mainly originates from

- Related results are available also in conference papers:

 [4], [5], [7], [11]
Transmit Power Adaptation

- In practice, there will always be residual self-interference after applying all means of mitigation.
- Fortunately, transmit power adaptation can still exploit the channel imbalance caused by residual interference.
 - In principle, the relay should appropriately lower its own transmit power if the first hop is the bottleneck of the system.
- Win–win solution: energy savings can be achieved while performance is also optimized.
Example with Amplify-and-Forward Protocol

The end-to-end signal-to-interference and noise ratio (SINR) starts to decrease when increasing relay gain beyond the optimal point.

- Relay should use its maximum allowed transmit power only in the case of low residual self-interference.
Full Duplex vs. Half Duplex

Related results are available also in conference papers: [1], [4], [7], [11]

In articles [2] and [3], our results focus on the full-duplex mode, but the analysis itself could be also used for comparison purposes.
Fundamental Rate–Interference Trade-off

- Determining the ultimate feasibility of full-duplex relaying in the presence of residual self-interference. In principle,
 - half-duplex relay link:
 - Reduced symbol rate due to two allocated channels
 - full-duplex relay link:
 - Residual self-interference even after mitigation

\[
R_{\text{HD}} = \frac{1}{2} \log_2 \left(1 + \frac{P_S}{P_N} \right)
\]

\[
R_{\text{FD}} = \log_2 \left(1 + \frac{P_S}{P_I + P_N} \right)
\]

- Should the system choose to operate with
 a) loss of end-to-end symbol rate (half duplex), or
 b) loss of S(I)NR due to self-interference (full duplex)?
Full- or Half-Duplex (... or Direct Transmission)?

- Rate–interference trade-off: choosing between
 - full-duplex (FD) relaying with residual self-interference
 - Direct link treated as interference at the destination
 - With and without transmit power adaptation
 - half-duplex (HD) relaying
 - Maximum ratio combining (MRC) for the direct and relayed transmissions at the destination
 - direct transmission (DT)
 - The same (full) symbol rate as with FD relaying but low channel SNR on average (coverage extension)

- The comparison yields switching boundaries between the modes according to channel imbalance
Let us next consider the case of deterministic (static) channels

- This represents, for example, a snapshot of the system within channel coherence time in a slow-fading environment
- Instantaneous channel state information (channel SNRs) for
 - choosing the proper mode
 - transmit power adaptation (with FD)
 - maximum ratio combining (with HD)
- Metric for the comparison: instantaneous transmission rate
 - The analysis can be completely conducted in terms of closed-form expressions (see the papers)
Instantaneous Switching Boundaries

\[\gamma_{LI} = \gamma_{SD} + 15 \text{ [dB]} \]

\[p_R = p_* R \]

- Full-duplex (FD) relaying is preferred with low self-interference
 - Transmit power adaptation extends the range further
- Pure direct transmission (DT) is preferred with a strong direct link and MRC gives little benefit for half-duplex (HD) relaying
Direct Transmission vs. Relaying

- FD relaying is suitable for the scenario of *coverage extension*
 - When the direct link exists in fortunate fading states, the relay is not momentarily needed at all
- Simple switching yields also good *diversity improvement*
Full-Duplex vs. Half-Duplex Relaying

Instead of adhering to any mode at early design stage, it is advantageous to implement hybrid full-duplex/half-duplex relaying, i.e., opportunistic switching between the modes, because the rate–interference trade-off favors them alternately during operation.
Statistical Channel State Information

Let us then consider the case of fading channels

- Fixed infrastructure relay node for coverage extension
 - Static link between the base station and the relay
 - Rayleigh-fading link between the relay and a mobile user
- Statistical channel state information (average channel SNRs) for
 - choosing the proper mode
 - transmit power adaptation (with FD)
- Metric for the comparison: average transmission rate
 - The actual rate expressions can be calculated in a closed form but switching boundaries and transmit power adaptation need numerical look-up tables (see the papers)
Statistical Switching Boundaries

- Statistical mode switching and transmit power adaptation yield rather good performance with much lower signaling overhead

 - Hybrid FD/HD relaying (instantaneous switching) gives the largest gains near statistical switching boundaries
Full-Duplex vs. Half-Duplex Relaying

without transmit power adaptation

with transmit power adaptation

- Illustrating downlink (DL) vs. uplink (UL) transmission
 - self-interference in a mobile channel vs. in a fixed channel

- Rate is significantly improved by choosing the proper mode which is typically FD when using transmit power adaptation
Conclusion
Conclusion

- Wireless full duplex: A progressive frequency-reuse concept!
- Herein: overview of recent work on *full-duplex relaying*
- Essential aspects that need to be considered when introducing full-duplex operation into multihop relaying systems
 - Loopback self-interference
 - Mitigation techniques and evaluation of their performance
 - physical isolation
 - time-domain cancellation
 - spatial-domain suppression
 - transmit power adaptation
 - Rate–interference tradeoff: the feasibility of full-duplex relaying in the presence of *residual* self-interference
- ... and how is all this related to OFDM mentioned in the beginning?
Joint Signal and Interference Processing

- **Herein:** “transparent” self-interference mitigation schemes
 - Any existing relaying protocol could be used
 - But the joint design of mitigation and a specific protocol would probably bring performance gains
- **Herein:** simple switching between direct transmission and relaying
 - Direct link is regarded as interference when using the relay
 - The destination could apply signal processing techniques to separate and constructively combine the superimposed signals from the source and the relay
Extensions to Other Full-Duplex Scenarios

Full-duplex communication
1) Multihop relay link
2) Bidirectional communication
3) Simultaneous down- and uplink

Other potential uses for STAR
- medium access control
- cognitive radios

Generic full-duplex radios
- improved isolation and mitigation
Limited Receiver Dynamic Range

- Severe risk of saturating analog-to-digital (A/D) converters
 - quantization noise due to limited resolution
 - clipping noise which is pronounced with OFDM
- Digital cancellation is useless if dynamic range is not sufficient
- It is difficult and expensive to adapt the response of an analog filter to match the time- and frequency-selective MIMO channel
Example on Quantization Noise (4-bit A/D)

- ~1-bit resolution for the signal of interest before A/D
- ~3-bit resolution for the signal of interest after digital cancellation and scaling
Example on Clipping Noise (4-bit A/D)

- ∼2-bit clipped resolution for the signal of interest
- ∼3-bit resolution for the signal of interest
Mitigation in Analog Domain

- Self-interference should be minimized before A/D conversion
 - Physical isolation is an antenna design problem
 - Analog cancellation is an electronics design problem
- Transmit-side beamforming can eliminate the interference “on-the-air” before it even reaches the receiver front-end
 - A digital signal processing problem!