

Aalto University School of Electrical Engineering

Subspace-Constrained SINR Optimization in MIMO Full-Duplex Relays under Limited Dynamic Range

Emilio Antonio-Rodríguez^{†*}, Roberto López-Valcarce[†] Taneli Riihonen^{*}, Stefan Werner^{*} and Risto Wichman^{*}

[†]Department of Signal Theory and Communications, University of Vigo, Vigo, Spain *Department of Signal Processing and Acoustics, Aalto University, Helsinki, Finland

UNIVERSIDADE DE VIGO

(4)

INTRODUCTION

- Motivation: To take advantage of the full-duplex operation, self-interference must be mitigated.
- Problem: Limited dynamic range at reception and transmission impairments complicate the design.
- The self-interference mitigation method should not impact the relay normal operation.

DESIGN

- We impose the following constraints on $\mathbf{G}_t[n]$:
 - Channel shortening constraints.
 - $\blacktriangleright Power delivered at \mathcal{D}.$
- Channel shortening constraints are expressed as H_{rd}(τ)g_t = 0, where τ denotes the order of H_{rd}[n] * G_t[n] and N_t(L_t + 1) > M_r(L_{eq} τ).
 Additionally, G_t[n] ensures that the power delivered at D is a fraction α of the maximum deliverable power. The design problem of G_t[n] transforms into
- Solution: We propose a self-interference mitigation method, based on linear filtering, for full-duplex relays under limited dynamic range:
 - Our method maximizes the signal-to-interference-plus-noise ratio by using combined spatial and time filtering.
 - Our method causes no impact on the system operation by imposing constraints into the design.

SYSTEM MODEL

Figure 1: Full-duplex relay with self-interference mitigation.

The link consists of source (S), relay (R) and destination (D) nodes:
R has N_r receive antennas and N_t transmit antennas. S has M_t antennas while D has M_r antennas.
ř[n] is the received signal at R from S and r_t[n] is the transmitted signal.
r[n] is the signal after digital conversion.

minimize
$$\mathbf{q}^{H} \mathbf{P}_{eq} \mathbf{q}$$

subject to $\|\mathbf{q}\|^{2} = p_{max}$

Vector \mathbf{q} is related to \mathbf{g}_t through a projection into the constraints subspace, and p_{max} ensures that the relay transmits at full power.

SIMULATIONS AND RESULTS

- ► The simulations have the following parameters:
 - ► $M_r = M_t = 2, N_t = 4$ and $N_r = 2$.
 - ► 64-QAM OFDM with 8192 subcarriers, a cyclic prefix length of 1/4 symbol and an oversampling factor of 2. Transmit noise $\delta = -30$ dB.
 - ► $\mathbf{H}_{sr}[n]$, $\mathbf{H}_{rd}[n]$ and $\mathbf{H}_{rr}[n]$ have order $L_{sr} = L_{rd} = L_{rr} = 2$ and gain of 0, 0 and 30 dB, while $L_a = L_{rr} = L_t = L_r = 2$ and $P_{max} = 20$ dB.
 - ► We compare performance with our previous method in [1].

• The received signal at \mathcal{R} consists of the the information signal $\check{\mathbf{r}}[n] = \mathbf{H}_{sr}[n] \star \mathbf{s}[n]$, the self-interference $\mathbf{i}[n] = \mathbf{H}_{rr}[n] \star \mathbf{r}_t[n]$ and the noise $\mathbf{n}_r[n]$:

 $\mathbf{n}_r[n] = \mathbf{n}[n] + \mathbf{w}[n] + \mathbf{H}_{rr}[n] \star \mathbf{v}[n]$

(1)

(2)

where $\mathbf{n}[n] \sim \mathcal{CN}(\mathbf{0}, \sigma^2 \mathbf{I})$ is the receiver input noise,

 $\mathbf{v}[n] \sim \mathcal{CN}(\mathbf{0}, \delta \operatorname{diag} \mathbb{E}\{\mathbf{r}_t[n]\mathbf{r}_t^H[n]\})$ models transmitter imperfections, and $\mathbf{w}[n] \sim \mathcal{CN}(\mathbf{0}, \gamma \operatorname{diag} \mathbb{E}\{\tilde{\mathbf{r}}[n]\tilde{\mathbf{r}}^H[n]\})$, models receiver dynamic range.

PROBLEM SETTING AND DESIGN

- The mitigation architecture consists of the L_a -th order cancellation filter $\mathbf{A}[n]$, the L_r -th order filter $\mathbf{G}_r[n]$ and the L_t -th order filter $\mathbf{G}_t[n]$.
- The signal-to-interference-plus-noise ratio after processing is defined as

 $\mathbb{SINR}_{\mathcal{R}} = \frac{\mathbb{E}\{\|\mathbf{G}_{r}[n] \star \check{\mathbf{r}}[n] \|^{2}\}}{\mathbb{E}\{\|\mathbf{G}_{r}[n] \star \mathbf{n}_{r}[n] + \mathbf{G}_{r}[n] \star (\mathbf{A}[n] + \mathbf{H}_{rr}[n]) \star \mathbf{G}_{t}[n] \star \hat{\mathbf{r}}_{t}[n] \|^{2}\}}$

Filters $\mathbf{A}[n]$, $\mathbf{G}_r[n]$ and $\mathbf{G}_t[n]$ are designed as the solution to the problem:

$$\begin{array}{l} \underset{\mathbf{A}[n],\mathbf{G}_{t}[n],\mathbf{G}_{r}[n]}{\text{maximize SINR}_{\mathcal{R}}}\\ \text{subject to} \quad \mathbb{E}\{\|\mathbf{r}_{t}[n]\|^{2}\} \leq P_{max} \end{array}$$

- The solution for A[n] is A[n] = -H_{rr}[n]. Filters G_r[n] and G_t[n] are obtained using an alternating optimization technique.
 For a fixed G_t[n], G_r[n] is designed as the solution to the following
- For a fixed $G_t[n]$, $G_r[n]$ is designed as the solution to the generalized eigenvalue problem

$$\underset{\mathbf{g}_{r}}{\text{maximize}} \frac{\mathbf{g}_{r}^{H}\mathbf{P}_{r}\mathbf{g}_{r}}{\mathbf{g}_{r}^{H}\mathbf{P}_{n}\mathbf{g}_{r}}$$
(3)

• Design of $\mathbf{G}_t[n]$ should avoid the trivial solution $\mathbf{G}_t[n] = \mathbf{0}$ while controlling the distortion over the \mathcal{R} - \mathcal{D} channel.

Figure 4: SINR improvement in terms of the dynamic range and the antennas of \mathcal{R} .

[1]. E. Antonio-Rodríguez, R. López-Valcarce, T. Riihonen, S. Werner, and R. Wichman, *SINR optimization in wideband full-duplex MIMO relays under limited dynamic range*, Proc. IEEE Sensor Array and Multichannel Signal Process. Workshop (SAM), Jun. 2014.