

Aalto University School of Electrical Engineering

SINR Optimization in Wideband Full-Duplex MIMO Relays under Limited Dynamic Range

Emilio Antonio-Rodríguez^{†*}, Roberto López-Valcarce[†] Taneli Riihonen^{*}, Stefan Werner^{*} and Risto Wichman^{*}

[†]Department of Signal Theory and Communications, University of Vigo, Vigo, Spain *Department of Signal Processing and Acoustics, Aalto University, Helsinki, Finland

(1)

UNIVERSIDADE DE VIGO

(4)

(5)

INTRODUCTION

- ► We consider a full-duplex MIMO decode-and-forward relay with:
 - **limited dynamic range** at receive and transmit side.
 - **self-interference** due to simultaneous reception and transmission.
- ► We propose a cancellation-suppression design that aims to: maximize the signal-to-interference-plus-noise ratio at the relay.

DESIGN

Problem (3) is equivalent to

minimize
$$\mathbf{g}_{t}^{H}(\mathbf{P}_{i} + \mathbf{R}_{i})\mathbf{g}_{t}$$

subject to $\mathbf{H}_{rd}\mathbf{g}_{t} = \mathbf{h}_{rd}^{(eq)}$
 $\mathbf{g}_{t}^{H}\mathbf{R}\mathbf{g}_{t} \leq P_{max}$

control the distortion in the relay-destination link.

SYSTEM MODEL

Figure: System model of a relay incorporating the cancellation-suppression architecture.

- The link consists of a source node (S), a relay node (R), and a destination node (\mathcal{D}) with the following characteristics:
 - ▶ S has M_t transmit antennas and transmits $\mathbf{s}_t[n]$.
 - \triangleright \mathcal{D} has M_r receive antennas and receives $\mathbf{d}_r[n]$.
 - \triangleright \mathcal{R} has N_r receive antennas and N_t transmit antennas, and transmits $\mathbf{r}_t[n]$ while receiving $\mathbf{r}_r[n]$.

- ► After some calculations, problem (4) can be expressed as a standard linear least squares with inequality constraints. For a feasible solution we require that $N_t > M_r$ and $L_t > (M_r L_{rd} / (N_t - M_r)) - 1$.
- Finally, $\mathbf{G}_r[n]$ is designed as the solution to

Problem (5) is recognized as a generalized eigenvalue problem.

SIMULATIONS AND RESULTS

- The simulations have the following parameters:
 - ▶ $m_s = m_r = M_r = M_t = 2.$
 - ▶ 64-QAM OFDM with 8192 subcarriers, a cyclic prefix length of 1/4and an oversampling factor of 2.
 - ▶ $\mathbf{H}_{sr}[n], \mathbf{H}_{rd}[n]$ and $\mathbf{H}_{rr}[n]$ have orders $L_{sr} = L_{rd} = L_{rr} = 2$ and gains of 0, 0 and 30 dB, respectively. Additionally, $L_a = L_{rr} = L_t = L_r = 2$ and $P_{max} = 20 \text{ dB}.$

$$\mathbf{H}_{rd}^{(eq)}[n] = egin{cases} \mathbf{I}, & n=0\ \mathbf{0}, & n
eq 0 \end{cases}$$

The received signal at \mathcal{R} consists of the the information signal $\check{\mathbf{r}}_r[n] = \mathbf{H}_{sr}[n] \star \mathbf{s}_t[n]$, the self-interference $\mathbf{i}_r[n] = \mathbf{H}_{rr}[n] \star \mathbf{r}_t[n]$ and the noise $\mathbf{n}_r |n|$:

 $\mathbf{n}_r[n] = \mathbf{n}_i[n] + \mathbf{v}_r[n] + \mathbf{H}_{rr}[n] \star \mathbf{v}_t[n]$

where $\mathbf{n}_i[n] \sim \mathcal{CN}(\mathbf{0}, \sigma^2 \mathbf{I})$ is the receiver input noise, $\mathbf{v}_t[n] \sim \mathcal{CN}(\mathbf{0}, \delta \operatorname{diag} \mathbb{E}\{\mathbf{r}_t[n]\mathbf{r}_t^H[n]\})$ models transmitter imperfections, and $\mathbf{v}_r[n] \sim \mathcal{CN}(\mathbf{0}, \gamma \operatorname{diag} \mathbb{E}\{\mathbf{r}_c[n]\mathbf{r}_c^H[n]\})$, with $\mathbf{r}_c[n] = \mathbf{r}_r[n] - \mathbf{v}_r[n]$, models receiver dynamic range.

PROBLEM SETTING AND DESIGN

- The cancellation-suppression architecture consists of the L_a -th order cancellation filter $\mathbf{A}[n]$, the L_r -th order filter $\mathbf{G}_r[n]$ and the L_t -th order filter $\mathbf{G}_t[n].$
- The signal-to-interference-plus-noise ratio after processing is defined as

 $\mathbb{E}\{\|\mathbf{G}_r[n] \star \check{\mathbf{r}}_r[n]\|^2\}$ $SINR_{\mathcal{R}} =$ $\mathbb{E}\{\|\mathbf{G}_r[n] \star \mathbf{n}_r[n] + \mathbf{G}_r[n] \star (\mathbf{A}[n] + \mathbf{H}_{rr}[n]) \star \mathbf{G}_t[n] \star \hat{\mathbf{r}}_t[n]\|^2\}$

Filters $\mathbf{A}[n]$, $\mathbf{G}_r[n]$ and $\mathbf{G}_t[n]$ are designed as the solution to the problem:

$$\begin{array}{c} \underset{A[n],G_{t}[n],G_{r}[n]}{\max \text{ maximize SINR}_{\mathcal{R}}} \\ \underset{Subject to \\ & \mathbb{E}\{\|\mathbf{r}_{t}[n]\|^{2}\} \leq P_{max} \end{array}$$
(2)

$$\begin{array}{c} \text{The solution for } \mathbf{A}[n] \text{ is } \mathbf{A}[n] = -\mathbf{H}_{rr}[n]. \\ \text{The solution for } \mathbf{A}[n] \text{ is } \mathbf{A}[n] = -\mathbf{H}_{rr}[n]. \\ \text{We decouple } \mathbf{G}_{t}[n] \text{ and } \mathbf{G}_{r}[n] \text{ by designing } \mathbf{G}_{t}[n] \text{ as the solution to} \\ \underset{G_{t}[n]}{\min \text{ minimize }} \mathbb{E}\{\|\mathbf{i}_{r}[n]\|^{2}\} + \mathbb{E}\{\|\mathbf{H}_{rr}[n] \star \mathbf{v}_{t}[n]\|^{2}\} \\ \underset{G_{t}[n]}{\operatorname{subject to }} \mathbf{H}_{rd}[n] \star \mathbf{G}_{t}[n] = \mathbf{H}_{rd}^{(eq)}[n] \\ \mathbb{E}\{\|\mathbf{r}_{t}[n]\|^{2}\} \leq P_{max} \end{array}$$
(3)

$$\begin{array}{c} \text{Linear constraints preclude trivial solutions and control the distortion in the mlaw destinction line.} \end{array}$$

the relay-destination link.

Figure: Additional isolation in terms of the noise level at the transmitter for different orders of $\mathbf{G}_r[n]$.

Figure: SINR improvement in terms of the dynamic range of the receiver.

emilio.antoniorodriguez@aalto.fi, valcarce@gts.uvigo.es, risto.wichman@aalto.fi Contact: