

Aalto University School of Electrical Engineering

Adaptive Self-interference Cancellation in Wideband Full-Duplex **Decode-and-Forward MIMO Relays**

Emilio Antonio-Rodríguez^{†*}, Roberto López-Valcarce[†] Taneli Riihonen*, Stefan Werner* and Risto Wichman*

[†]Department of Signal Theory and Communications, University of Vigo, Vigo, Spain *Department of Signal Processing and Acoustics, Aalto University, Helsinki, Finland

UNIVERSIDADE DE VIGO

SYSTEM MODEL

- System model consists of a source (S), a relay (R) and a **destination** (\mathcal{D}) .
 - \triangleright S transmits M_s streams using M_t antennas.
 - \triangleright \mathcal{R} has N_r receive and M_r transmit antennas.

▶ The decoder, $f_r(\cdot)$, retrieves M_s the streams. ► $\mathbf{G}_{s}(\mathbf{z})$ and $\mathbf{G}_{r}(\mathbf{z})$ are linear precoding matrices.

Figure : System model of a full-duplex decode-and-forward relay with self-interference mitigation.

INTRODUCTION

- **Full-duplex relays** are used to extend network **coverage** and increase network **performance**.
 - ► Higher **spectral efficiency** than half-duplex relays.
 - **Self-interference** due to simultaneous reception and transmission.
- Self-interference can **degrade** the relay performance. We propose a **mitigation method** that
 - introduces no extra delay in the relay.
 - works independently of the relay protocol.
 - is **adaptive**, so it can continuously update and refine the estimation.

PROBLEM SETTING AND MITIGATION METHOD

The signal $\mathbf{y}(n)$ couples back into the relay through $\mathbf{H}_{rr}(\mathbf{z})\mathbf{G}_{r}(\mathbf{z})$ and interferes with $\mathbf{x}(n)$.

ALGORITHM ANALYSIS (continued)

- Singular case ($\mathbf{R}_{V}^{(L_{a},L_{a})}$ rank-deficient): multiple solutions. The bias can be reduced by selecting $\mathbf{R}_{\star}[k](n) = \sum_{i=0}^{L_a} \mathbf{A}[i](n) \Theta_{ik}$ as the solution of minimize $\operatorname{tr} \{ \mathbf{H}_{res} \mathbf{R}_{Y}^{(L_a, L_a)} \mathbf{H}_{res}^{H} \}$ subject to rank $\{\mathbf{R}_{\mathbf{V}}^{(L_a,L_a)} - \Theta\} = M_s(L_a + 1)$
- In all the above cases, the algorithm is **globally convergent** regardless of the initialization and $\mathbf{R}[k]$.

SIMULATION RESULTS

- ► $M_s = 2$ OFDM independent streams with $N_{sub} = 8192$ subcarriers and cyclic prefix length $1/4N_{sub}$.
- \triangleright $N_r = 4, M_r = 3, P_x = 0$ dB and $\mu_a = 10^{-3}$.

► Signal-to-interference ratio, SIR, can be very low.

Self-interference must be mitigated

- ▶ We assume a decoding delay such that $\mathbb{E}\{\mathbf{t}(n)\mathbf{y}^H(n-k)\} \approx \mathbf{0}$, for any k > 0.
- \triangleright We propose an adaptive filter, $\mathbf{A}(\mathbf{z})$, for self-interference mitigation.
- Cancellation filter $\mathbf{A}(\mathbf{z})$ should identify $\mathbf{H}_{rr}(\mathbf{z})\mathbf{G}_{r}(\mathbf{z})$.
- The proposed adaptation rule for $\mathbf{A}(\mathbf{z})$ is

 $\mathbf{A}[k](n+1) = \mathbf{A}[k](n) + \mu_a(\mathbf{R}_{\star}[k] - \mathbf{e}(n)\mathbf{y}^H(n-k))$

for $k = 0, ..., L_a$, with L_a being the order of $\mathbf{A}(z)$, and $\mu_a > 0$ being the step-size. Matrix $\mathbf{R}_{\star}[k]$ is a predefined bias term.

ALGORITHM ANALYSIS

Upon convergence, any stationary point satisfies

 $\mathbf{A}_{\star}\mathbf{R}_{Y}^{(L_{a},L_{a})}+\mathbf{H}\mathbf{R}_{Y}^{(L_{eq},L_{a})}=\mathbf{R}_{\star}$

where $\mathbf{A}_{\star} = [\mathbf{A}_{\star}[\mathbf{0}] \cdots \mathbf{A}_{\star}[L_{\alpha}]]$. **H** and **R** are analogous defined. Matrix $\mathbf{H}(z) = \mathbf{H}_{rr}(z)\mathbf{G}_{r}(z)$ is of order L_{eq} . Additionally,

Sufficient order case, $L_a = 2$.

(a) Convergence time distribution (in samples).

mitigation.

- Figure (a) shows the samples needed from initialization A(0) = 0 to $||\mathbf{A}(\tau) + \mathbf{H}||_{F}/||\mathbf{H}||_{F} < -25 \text{ dB. SIR}_{pre} = -20 \text{ dB and SNR} = 3.8 \text{ dB.}$
 - **Convergence time** lies within the **cyclic prefix**.
- Figure (b) shows the **residual self-interference** power after mitigation. $SIR_{pre} = -20 \text{ dB}$ and SNR is variable.
- ► More than **30 dB** of **mitigation** is attained with a single OFDM symbol and more than 46 dB with 15 symbols. Residual self-interference is below noise level.

$$\mathbf{R}_{Y}^{(\alpha,\beta)} = \begin{pmatrix} \mathbf{R}_{yy}[\mathbf{0}] & \cdots & \mathbf{R}_{yy}[\beta] \\ \vdots & \ddots & \vdots \\ \mathbf{R}_{yy}[-\alpha] & \cdots & \mathbf{R}_{yy}[\beta - \alpha] \end{pmatrix}$$

- with $\mathbf{R}_{vv}[k]$ is the autocorrelation of $\mathbf{y}(n)$ at lag k.
- We can distinguish the following cases:
 - Undermodeled case ($L_a < L_{eq}$): algorithm converges to a biased solution.

 $\mathbf{A}_{\star} = -\mathbf{H}_{L} + (\mathbf{R} - \mathbf{H}_{U}\mathbf{D}_{V}^{(L_{eq},L_{a})})(\mathbf{R}_{V}^{(L_{a},L_{a})})^{-1}$ Sufficient order case ($L_a \ge L_{eq}$): algorithm converges to $\mathbf{A}_{\star} = \mathbf{H}$ by using $\mathbf{R}[k] = \mathbf{0}$. It is equivalent to a gradient descent.

CONCLUSIONS

- No extra delay is introduced into the system, which is critical for network latency.
- The relay decoder is **decoupled** from the mitigation method, which **eases** the relay **design**.
- Algorithm convergence is **fast** enough to suit a wideband **OFDM** system. Algorithm converges within duration of cyclic prefix . **Global** convergence is ensured regardless of the initialization.
- Mitigation level attained within one OFDM symbol is **sufficient** for a typical scenario. Additional symbols **increase** the mitigation. Self-interference can be mitigated **below noise** level.