

Aalto University School of Electrical Engineering

Autocorrelation-based Adaptation Rule for Feedback Equalization in Wideband Full-Duplex **Amplify-and-Forward MIMO Relays**

Emilio Antonio-Rodríguez^{†*}, Roberto López-Valcarce[†] Taneli Riihonen^{*}, Stefan Werner^{*} and Risto Wichman^{*}

[†]Department of Signal Theory and Communications, University of Vigo, Vigo, Spain *Department of Signal Processing and Acoustics, Aalto University, Helsinki, Finland

DE VIGO

SYSTEM MODEL

Figure: System model of a full-duplex amplify-and-forward relay with self-interference mitigation and channel equalization.

INTRODUCTION

- **Relays** allow for an extended network **coverage** and increased network performance, especially within single-frequency networks (SFN). Among the different relay types, full-duplex relays transmit and receive **simultaneously**, which translates into:
 - ► Higher **spectral efficiency** than half-duplex relays.
 - **Self-interference** at the relay receive side.
- Self-interference at the relay can **dramatically** reduce the relay **performance** if its power is high enough. Consequently **mitigation** of this distortion is required. We propose:
 - ► a self-interference mitigation **method** for full-duplex amplify-and-forward MIMO relays.
- Our method has the following characteristics:
- ▶ it is **adaptive**, so it can keep track of environment changes.
- ▶ it only requires **statistical** information of the source signal.
- it introduces no extra delay in the relay processing.

ALGORITHM ANALYSIS

- \triangleright Upon convergence, and assuming sufficient order L_a , any stationary point will satisfy:
 - ► $\mathbf{H}_{xy}(z) = \Sigma(z)\mathbf{V}\Gamma^{-1}(z)$, with $\Sigma(z)$ and $\Gamma(z)$ being the minimum phase factors of $\mathbf{s}(n)$ and $\mathbf{x}(n)$, respectively. V is a unitary matrix.
 - \blacktriangleright **y**(*n*) can be thought of as **s**(*n*) being filtered by a pre-whitening filter $\Gamma^{-1}(z)$, followed by a undetermined spatial rotation V, and a conformation filter $\Sigma(z)$.
 - Assuming that $\mathbf{H}_{sr}(z)\mathbf{G}_t(z)$ is minimum-phase and $\Sigma(z) = \sigma \mathbf{I}$, we can explicitly state that $\mathbf{H}_{sy}(z) = \mathbf{V}$ and, consequently, the algorithm is able of self-interference **mitigation** and channel **equalization**.

SIMULATION RESULTS

Simulation parameters:

▶ it can **equalize** the source-relay channel.

- The system model consists of a source (S), a relay (\mathcal{R}) and a **destination** (\mathcal{D}) , with the following characteristics:
 - \triangleright S transmits M_s streams using M_t antennas.
 - \triangleright \mathcal{R} has M_s receive and M_r transmit antennas.
 - ▶ the proposed equalizer is $W_r(z) = (I BA(z))^{-1}B$, with B and A(z)being $M_s \times M_s$ matrices.
- The relay response from $\mathbf{x}(n)$ to $\mathbf{y}(n)$ is $\mathbf{H}_{xy}(z) = (\mathbf{I} - \mathbf{W}_r(z)\mathbf{H}_{rr}(z)\mathbf{G}_r(z))^{-1}\mathbf{W}_r(z)$. Self-interference is eliminated $\mathbf{W}_r(\mathbf{z}) = (\mathbf{I} + \mathbf{H}_{rr}(\mathbf{z})\mathbf{G}_r(\mathbf{z}))^{-1}$.
- \blacktriangleright **W**_{*r*}(*z*) has enough degrees of freedom to additionally equalize $\mathbf{H}_{sr}(z)\mathbf{G}_t(z)$, so we have $\mathbf{y}(n) = \mathbf{s}(n-\delta)$.
- In order to achieve such desirable equalization, we adapt **B** and $\mathbf{A}(z)$ using the following rule:

 $\mathbf{A}[k](n+1) = \mathbf{A}[k](n) + \mu_a(\mathbf{R}_{\star}[k] - \mathbf{y}(n)\mathbf{y}^H(n-k))$ $\mathbf{B}(n+1) = \mathbf{B}(n) + \mu_b(\mathbf{R}_{\star}[\mathbf{0}] - \mathbf{y}(n)\mathbf{y}^H(n))$

 \blacktriangleright We use $M_s = 2$ independent streams of an OFDM-modulated source signal with $N_{sub} = 8192$ subcarriers and $1/4N_{sub}$ cyclic prefix length. An oversampling factor of 2 is used at the input and output of $\mathbf{W}_r(z)$. Sufficient-order case with $L_a = 4$, $SNR_{in} = 10 \text{ dB}$ and $\kappa = -5 \text{ dB}$ (ratio between information signal and self-interference signal powers).

(a) SNR_{out} as function of κ and SNR_{in}.

(b) Restoration of reference psd.

- Figure (a) shows the relation between SNR_{in} and SNR_{out} as a function of κ . We see that the algorithm always **improves** the signal-to-noise ratio of the system, i.e. $SNR_{out}/SNR_{in} > 1$, and the **improvement** is bigger for lower SNR_{in}.
- Figure (b) shows the resulting spectrum after convergence of the

for $k = 0, ..., L_a$, with L_a being the order of $\mathbf{W}_r(z)$ and step-sizes $\mu_a > 0$ and $\mu_b > 0$. The algorithm only makes use of the side information $\mathbf{R}_{\star}[k] = \mathbb{E}\{\mathbf{s}(n)\mathbf{s}^{H}(n-k)\}.$

CONCLUSIONS I

- The proposed method solves the problem of self-interference mitigation in amplify-and-forward MIMO full-duplex relays by using only statistical information of the source signal as side information.
- **Simulations** show that our method **improves** the output **SNR** for a wide range of self-interference power levels.

algorithm, and how the algorithm is effectively capable of mitigating the self-interference signal and channel equalization while improving the SNR_{in} (note the spectrum ripples caused by the self-interference signal and the S - R channel).

CONCLUSIONS II

► In addition to self-interference mitigation, our method is able of equalizing the source-relay channel up to of a mere spatial rotation. Note that due to the structure of $\mathbf{W}_r(z)$, no extra delay is introduced into the system, and therefore **not increasing** the network **latency**.

Contact: emilio.antoniorodriguez@aalto.fi, valcarce@gts.uvigo.es