Large-System Analysis of Rate Regions in Bidirectional Full-Duplex MIMO Link: Suppression versus Cancellation

Taneli Riihonen, Mikko Vehkaperä, and Risto Wichman
Aalto University School of Electrical Engineering, Finland

Session WA5 “Communication Over Full-duplex Channels”, March 20, 2013
47th Annual Conference on Information Sciences and Systems (CISS)
Introduction
General Topic: Full-Duplex Wireless

• “Full-duplex” wireless communication
 = systems where some node(s) may transmit and receive simultaneously on a single frequency band

• Progressive physical/link-layer frequency-reuse concept
 = up to double spectral efficiency at system level, if the significant technical problem of self-interference is tackled

• Transmission and reception should use the band for the same amount of time to make the most of full duplex
 ▶ (a)symmetry of traffic pattern, i.e., requested rates in the two simultaneous directions
 ▶ (a)symmetry of channel quality, i.e., achieved rates in the two simultaneous directions
Full-Duplex Communication Scenarios

1) Bidirectional communication link between two terminals
 - Asymmetric traffic (typically)
 - Symmetric channels (roughly)

2) Multihop relay link
 - Symmetric traffic
 - Asymmetric channels
 - Direct link may be useful

3) Simultaneous down- and uplink for two half-duplex users
 - Asymmetric traffic
 - Asymmetric channels
 - Inter-user interference!
Scope: Rate Regions in Two-Way Communication

- Bidirectional full-duplex multiantenna (MIMO) link
 - at the large-system limit
 - with asymmetric traffic
 - assuming symmetric setup for numerical results

- Achievable rate regions by controlling
 - spatial multiplexing
 - time sharing

- The analysis is based on the replica method borrowed from statistical physics
Focus: Suppression vs. Cancellation

- The link needs efficient self-interference mitigation at both ends
 - **Suppression**: forming eigenbeams to transmit and receive in orthogonal directions ("null-space projection")
 - **Cancellation**: subtracting the interfering signal before decoder
- Both schemes can eliminate interference, but suppression is possible only at the cost of consuming spatial degrees of freedom
Signal Model

- Terminal $i \in \{1, 2\}$ has M_i transmit and N_i receive antennas
- In communication direction $ij \in \{12, 21\}$:

\[
y_j = G_j H_{ij} F_i x_i + G_j H_{jj} F_j x_j + G_j n_j
\]

- The link reserves \hat{M}_i transmit and \hat{N}_j receive streams for spatial multiplexing after self-interference mitigation
- Terminal i does not know H_{ij} but Terminal j knows H_{ij} and H_{jj}
Spatial-Domain Suppression

- Suppression exploits the transmit and receive beamforming filters:
 \[\mathbf{F}_j \in \mathbb{C}^{M_j \times \hat{M}_j} \text{ and } \mathbf{G}_j \in \mathbb{C}^{\hat{N}_j \times N_j} \]

 ▶ Orthonormal spatial streams: \(\mathbf{F}_j^H \mathbf{F}_j = \mathbf{I} \) and \(\mathbf{G}_j \mathbf{G}_j^H = \mathbf{I} \)
 - Maximum for full-rank \(\mathbf{H}_{jj} \) is \(\hat{M}_j + \hat{N}_j = \max\{M_j, N_j\} \)

- Self-interference is eliminated in Terminal \(j \) if \(\mathbf{G}_j \mathbf{H}_{jj} \mathbf{F}_j = 0 \)
 ▶ Implemented using the SVD of \(\mathbf{H}_{jj} \) (for instance)
Time-Domain Cancellation

- Cancellation is based on the subtraction of the interfering signal so that decoder input becomes \(y_j - G_j H_j j F_j x_j \)
 - Terminal \(j \in \{1, 2\} \) needs to know its own transmitted signal \(x_j \) which is not required with spatial-domain suppression
- All spatial degrees of freedom can be reserved for multiplexing
 - \(\hat{M}_j = M_j, \hat{N}_j = N_j \) and \(F_j = I, G_j = I \) in the analysis
Spatial-Division Multiplexing

Spatial-domain suppression:

\[y_j = G_j H_{ij} F_i x_i + G_j n_j, \quad \mathcal{E}\{x_i x_i^H\} = \frac{1}{\hat{M}_i} I \]

- Transmitter side: standard open-loop spatial multiplexing of independent Gaussian streams into \(x_i \)
- Receiver side: joint decoding for \(y_j \) knowing \(G_j H_{ij} F_i \in \mathbb{C}^{\hat{N}_j \times \hat{M}_i} \)

Time-domain cancellation:

- After mitigation, the signal model is transformed to

- Time sharing between different stream configurations in order to make the achievable rate region convex with suppression
Analytical Results
We are interested in evaluating the average transmission rate as

\[R_{ij} = \mathcal{E}\{\log \det(\text{I} + \frac{1}{\hat{M}_i} G_j H_{ij} F_i (G_j H_{ij} F_i)^H)\} \]

over the joint distribution of random matrices \(G_j, H_{ij}, \) and \(F_i \).

Instead, we begin from the definition of mutual information:

\[\frac{R_{ij}}{\hat{M}_i} = \mathcal{E}\{\log p(y_j | x_i, G_j, H_{ij}, F_i)\} - \mathcal{E}\{\log \mathcal{E}_{x_i}\{p(y_j | x_i, G_j, H_{ij}, F_i)\}\} \]

where \(p(\cdot | \cdot) \) is the Gaussian posterior probability.

The above expression can be transformed to

\[\frac{R_{ij}}{\hat{M}_i} = -\frac{\hat{N}_j}{\hat{M}_i} - \frac{1}{\hat{M}_i} \lim_{u \to 0} \frac{\partial}{\partial u} \log \mathcal{E}\{\mathcal{E}_{x_i}\{\exp(-\|y_j - G_j H_{ij} F_i x_i\|^2)\}\}^u \]

where the first term is trivial and the second term comes from the identity \(\lim_{u \to 0} \frac{\partial}{\partial u} \log \mathcal{E}\{Z^u\} = \mathcal{E}\{\log Z\} \).
Replica Method and Integration

• With $\Delta x_a = x_0 - x_a$, the replica trick amounts to evaluating

$$\frac{R_{ij}}{\hat{M}_i} = -\frac{\hat{N}_j}{\hat{M}_i} - \lim_{\hat{M}_i \to \infty} \frac{1}{\hat{M}_i} \lim_{u \to 0} \frac{\partial}{\partial u} \log \mathcal{E}\{\prod_{a=1}^u e^{-\|\hat{M}_i^{-1/2} G_j H_{ij} F_i \Delta x_a + G_j n_j\|^2}\}$$

where u is an integer inside \log but a real number outside \log (!?)

• After Gaussian integration over n_j and $v_a = \hat{M}_i^{-1/2} H_{ij} F_i \Delta x_a$,

$$\frac{R_{ij}}{\hat{M}_i} = -\frac{\hat{N}_j}{\hat{M}_i} - \lim_{\hat{M}_i \to \infty} \frac{1}{\hat{M}_i} \lim_{u \to 0} \frac{\partial}{\partial u} \log \mathcal{E}\{e^{G(Q,D_j)}\}$$

where $\{Q\}_{a,b} = \frac{1}{\hat{M}_i} x_b^H x_a$ and $D_j = T_j^T T_j$ is binary and diagonal

• If the limits can be swapped, the saddle-point method implies

$$\frac{R_{ij}}{\hat{M}_i} = -\frac{\hat{N}_j}{\hat{M}_i} - \lim_{u \to 0} \frac{\partial}{\partial u} \lim_{\hat{M}_i \to \infty} \frac{1}{\hat{M}_i} \log \mathcal{E}_{D_j}\{\exp(\hat{M}_i \text{extr } T(Q, \tilde{Q}, D_j))\}$$

where $T(Q, \tilde{Q}, D_j) = \frac{1}{\hat{M}_i} G(Q, D_j) - \text{tr}(Q \tilde{Q}) + \log M(\tilde{Q})$
Replica Symmetry Assumption and Extremization

- Before extremization, \(T(Q, \tilde{Q}, D_j) \) is transformed by replica symmetry

 \[Q = I_{u+1}(p - q) + 1_{(u+1) \times (u+1)} q \quad \text{and} \quad \tilde{Q} = I_{u+1}(\tilde{p} - \tilde{q}) + 1_{(u+1) \times (u+1)} \tilde{q} \]

 to \(T_u(p, q, \tilde{p}, \tilde{q}) = -u \frac{\tilde{N}_j}{\hat{M}_i} \log(1 + \tilde{\gamma}_{ij}(p - q)) - (u + 1)(p\tilde{p} + uq\tilde{q}) + \log M(\tilde{Q}) \)

- Matrix \(D_j \) also disappears and we get a tractable form as

 \[
 \frac{R_{ij}}{\hat{M}_i} = -\lim_{u \to 0} \frac{\partial}{\partial u} \text{extr}_{p,q,\tilde{p},\tilde{q}} T_u(p, q, \tilde{p}, \tilde{q})
 \]

 which matches to the case of an i.i.d. Gaussian \(\hat{M}_i \times \hat{N}_j \) channel

- Finally, we may exploit existing proofs (e.g., by Verdú) to obtain

\[
\frac{R_{ij}}{\hat{M}_i} \simeq \log \left(1 + \frac{\tilde{N}_j}{\hat{M}_i} \cdot \frac{\tilde{\gamma}_{ij}}{1 + E} \right) + \frac{\tilde{N}_j}{\hat{M}_i} \left(\log(1 + E) - \frac{E}{1 + E} \right)
\]

where \(E = \tilde{\gamma}_{ij}(p - q) \) is a solution to \(\frac{\tilde{\gamma}_{ij}}{E} = 1 + \frac{\tilde{N}_j}{\hat{M}_i} \cdot \frac{\tilde{\gamma}_{ij}}{1 + E} \)

▷ The achievable transmission rates of the two directions are indirectly coupled via \(\hat{M}_j + \hat{N}_j = \max\{M_j, N_j\} \).
Numerical Results
Example Setups

• The numerical results concentrate on symmetric systems where
 ▶ $M = M_1 = M_2$
 ▶ $N = N_1 = N_2$
 ▶ $\bar{\gamma} = \bar{\gamma}_{12} = \bar{\gamma}_{21}$

• However, some asymmetry should be taken into account
 ▶ Requested rates may be different in the two directions, reflecting typical downlink/uplink imbalance (R_{12}/R_{21})
 ▶ There may be transmit/receive antenna imbalance (M/N)
 – At the large-system limit, M and N grow asymptotically

• In summary, there are three key parameters to explore:

\[
\begin{array}{ccc}
R_{12}/R_{21} & \bar{\gamma} & M/N \\
\end{array}
\]
Transmission Rate vs. SNR

- When
 - \(M = 4 \)
 - \(N = 8 \)

 a) lines: asymptotic \textit{analytical} values projected to this finite case
 b) markers: accurate \textit{simulated} values

- The asymptotic results are useful also for not-so-large systems
- Trade-off (indirect coupling) between rates in two directions:
 When choosing \((\hat{M}_i, \hat{N}_j)\) as a stream configuration in one direction, the opposite configuration becomes \((\hat{M}_j, \hat{N}_i) = (8 - \hat{N}_j, 8 - \hat{M}_i)\)
Achievable Rate Regions (1)

- When
 - $M = 4$
 - $N = 8$
 - $\bar{\gamma} = 8\text{dB}$
- Varying \hat{M}_1 and \hat{M}_2
 - which sets
 - $\hat{N}_1 = 8 - \hat{M}_1$
 - $\hat{N}_2 = 8 - \hat{M}_2$
 - for suppression
- Each stream configuration (\hat{M}_1, \hat{M}_2) renders a rectangular region
 - Suppression: 16 different two-way regions and two degenerate cases where data is transmitted in one direction only
Achievable Rate Regions (2)

- When
 - $M = 4$
 - $N = 8$
 - $\bar{\gamma} = 8$ dB

- Varying \hat{M}_1 and \hat{M}_2, which sets
 - $\hat{N}_1 = 8 - \hat{M}_1$
 - $\hat{N}_2 = 8 - \hat{M}_2$

 for suppression

- The complete rate region is achieved by *time sharing* between different fixed stream configurations (\hat{M}_1, \hat{M}_2)
 - The convex hull of the union of rectangular rate regions
Achievable Rate Regions (3)

- When
 - $M = 4$
 - $N = 8$
 - $\bar{\gamma} = 8\text{dB}$

- Varying continuously \hat{M}_1/M and \hat{M}_2/M

- Using time sharing when $R_{12} \sim R_{21}$

- Rate region projected from the asymptotic analytical results (dashed line) matches well with the finite-case simulations
Achievable Rate Regions vs. SNR

- When
 - $(M, N) = (4, 8)$
 - $\tilde{\gamma} = 20\text{dB}$
 - 15dB
 - 10dB
 - 5dB
 - 0dB
 - -5dB

- The absolute rates increase with the SNR value, as expected, but otherwise it affects only slightly the shape of rate regions
- Asymmetric traffic can be supported without time sharing
Achievable Rate Regions vs. Antenna Imbalance

- When

 \[(M, N) = (8, 8) = (4, 8) = (8, 4) = (4, 4) \]

 \[\tilde{\gamma} = 12\text{dB} \]

- Transmit/receive antenna imbalance \((M/N)\) affects significantly the shape of the rate regions with spatial-domain suppression.
- The rate region of suppression is always inside that of cancellation.
Suppression vs. Cancellation (SNR)

\[\bar{\gamma} \] [dB] vs. \(R_{12} + R_{21} \) [%] with suppression

- SNR defines whether the performance is limited by transmit-side multiplexing gain or receive-side array gain
- Worst case: equal number of transmit and receive antennas
Transmit/receive antenna imbalance is a critical factor when characterizing the rate loss of suppression versus cancellation.

Having more transmit antennas than receive antennas is preferred.
Conclusion
Conclusion

- Hot emerging research topic: wireless full-duplex communication
 - A progressive frequency-reuse concept: significantly improved spectral efficiency at the cost of self-interference
- Achievable rate regions in bidirectional full-duplex link by controlling stream configurations and time sharing
 - Comparing spatial suppression to subtractive cancellation
 - Characterizing the cost of allocating a part of spatial degrees of freedom for self-interference mitigation
- Analysis at the large-system limit based on the replica method
 - Validation by Monte Carlo simulations with small number of antennas proves that the results have also practical value
- Antenna imbalance is good for suppression especially when there are more transmit than receive antennas
Aalto University
School of Electrical Engineering