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Introduction
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Problem: Coverage Gaps
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Coverage area of the main transmitter

Shadow zone

• How to serve shadowed areas in cellular systems?

⊲ Transmit powers cannot be increased indefinitely
⊲ The transmitter density needs to be higher and non-uniform



Solution: Full-Duplex Repeaters (1)
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rx

• Capture a good quality input signal within the main coverage area

⊲ highly directional receive (rx) antenna in an elevated position
⊲ preferably line-of-sight to the source (S) transmitter



Solution: Full-Duplex Repeaters (2)
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• Amplify and forward the signal within the shadow zone
• Omnidirectional transmit (tx) antenna, e.g., for providing

a) indoor coverage



Solution: Full-Duplex Repeaters (3)
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b)
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• Amplify and forward the signal within the shadow zone
• Omnidirectional transmit (tx) antenna, e.g., for providing

b) underground coverage



Solution: Full-Duplex Repeaters (4)
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c)

S

rx

tx

D

• Amplify and forward the signal within the shadow zone
• Omnidirectional transmit (tx) antenna, e.g., for providing

c) coverage between buildings



Solution: Full-Duplex Repeaters (5)
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• Distributed tx antenna system can be also implemented
• Transparent coverage boost without allocating extra frequencies
• No wired (optical fiber) data connection needed, only power supply



Problem&Solution: Self-interference Cancellation
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• Single-frequency operation comes at the cost of self-interference
• The repeater’s gain needs to be limited to avoid oscillation

⊲ Herein: sufficient cancellation performance and gain margin



Problem: Oscillator Phase Noise in OFDM
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• Generally speaking, orthogonal frequency-division multiplexing is

⊲ robust to timing asynchronism and multipath delay spread
⊲ sensitive to phase noise, carrier offset, I/Q imbalance

• Jumps from base band (BB) to carrier frequency fc and back to BB

upconversion: atx(t) = e2πfct+θtx(t)

downconversion: arx(t) = e−2πfct+θrx(t)

• Focus in this work: The effect of phase noise, θtx(t) and θrx(t),
in terms of processing delay with two different repeater designs



System Model
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OFDM Repeater Link: Signal Model (1)
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• Standard OFDM modulator: Frequency-domain symbols {XS[n]}
Nc−1
n=0

are transformed into analog baseband signal xS(t)
• Upconversion: Mixing xS(t) with oscillator signal aS(t)

x̂S(t) = aS(t) · xS(t)

where the oscillator is assumed to be ideal: aS(t) = e2πfct

• After a passband filter and a high-power amplifier, RF signal x̂S(t)

propagates to the repeater through multipath channel hSR(t)

ŷR(t) = (hSR ∗ x̂S)(t) + ŵR(t)



OFDM Repeater Link: Signal Model (2)
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Repeater (R)

arx(t) β atx(t)

xR(t)
x̂R(t)

yR(t)
ŷR(t)

A/D D/A

• Downconversion: Mixing ŷR(t) with oscillator signal arx(t)

yR(t) = arx(t) · ŷR(t)

• Processing delay τ due to digital (or only analog?) filtering etc.

⊲ Amplification by β, self-interference cancellation, equalization

• Upconversion: Mixing xR(t) with oscillator signal atx(t)

x̂R(t) = atx(t) · xR(t)

• Non-ideal repeater oscillator(s): Phase noise in arx(t) and atx(t)



OFDM Repeater Link: Signal Model (3)
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• After a passband filter and a high-power amplifier, RF signal x̂R(t)

propagates to the destination through multipath channel hRD(t)

ŷD(t) = (hRD ∗ x̂R)(t) + ŵD(t)

• Downconversion: Mixing ŷD(t) with oscillator signal aD(t)

yD(t) = aD(t) · ŷD(t)

where the oscillator is assumed to be ideal: aD(t) = a∗S(t)
• Standard OFDM demodulator: Analog baseband signal yD(t)

is transformed to frequency-domain symbols {YD[n]}
Nc−1
n=0



OFDM Repeater Link: Signal Model (4)
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• Let us denote aR(t) = atx(t) · arx(t− τ)
• End-to-end baseband signal model in time domain (simplified form):
yD(t) = βhRD(t) ∗ {aR(t) · (hSR ∗ xS)(t− τ) + wR(t− τ)}+ wD(t)

• Equivalent model in frequency domain for the nth subcarrier:

YD[n] = βHRD[n]
Nc−1
∑

k=0

AR[k−n](HSR[k]XS[k]+WR[k])+WD[n]

⊲ Inter-carrier interference (ICI) is realized through AR[k] which
corresponds to phasor aR(t) from oscillator phase noise



Signal-to-Interference and Noise Ratio (SINR)
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• Signal, interference and noise powers

E{|YD[n]|
2} = β2|HRD[n]|

2
Nc−1
∑

k=0

|AR[k − n]|2(|HSR[k]|
2PS[k] + σ2

R) + σ2
D

where PS[n] = E{|XS[n]|2}, σ2
R = E{|WR[n]|2}, σ2

D = E{|WD[n]|2}
• With sufficiently coherent channels (vs. oscillator’s spectral density)

E{|YD[n]|
2} ≃ β2|HRD[n]|

2(|HSR[n]|
2PS[n] + σ2

R)

Nc−1
∑

k=0

|AR[k]|
2 + σ2

D

• Finally, the instantaneous SINR can be expressed as

γ[n] =
(1− α)γSR[n]γRD[n]

(αγSR[n] + 1)γRD[n] +
Ptx[n]
σ2

R
β2

where α = 1− |AR[0]|2 =
∑Nc−1

k=1 |AR[k]|2 represents ICI power and
SNRs are γSR[n] = PS[n]|HSR[n]|2/σ2

R, γRD[n] = Ptx[n]|HRD[n]|2/σ2
D



Non-ideal Oscillators in the Repeater

Taneli Riihonen Phase Noise in OFDM Repeaters – 17 / 32

• In the following: Comparison of two different repeater designs

(a) Two separate oscillators

arx(t) atx(t)

amplification

– downconversion:
arx(t) = e−(2πfct−θrx(t))

– upconversion:
atx(t) = e(2πfct+θtx(t))

(b) Reusing single oscillator

arx(t) a∗

rx
(t)

amplification

conjugation

– downconversion:
arx(t) = e−(2πfct−θrx(t))

– upconversion:
atx(t) = a∗rx(t) = e(2πfct−θrx(t))

• The total phase distortion caused by phase noise and repeater
processing delay τ can be captured as phasor process

aR(t) = arx(t− τ) · atx(t)



Wiener Phase Noise
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• The phase noise of free-running oscillators can be modelled
accurately as a Wiener process, i.e., standard Brownian motion
or “random walk with Gaussian steps”:

θrx(t0)− θrx(t0 − t) ∼ N (0, crx · |t|)
θtx(t0)− θtx(t0 − t) ∼ N (0, ctx · |t|)

• (In)dependence of rx and tx sides due to the repeater design

⊲ Two separate oscillators: θtx(t) is independent of θrx(t)
⊲ Reusing single oscillator: θtx(t) = −θrx(t)

• The quality of the oscillator is parametrized by f3dB which defines
the 3dB bandwidth of the oscillator power spectral density (PSD)

⊲ When using two oscillators, they are assumed to be
of similar quality in this study: c = crx = ctx = 4πf3dB



Spectral Spreading due to Phase Noise
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Example (1): Long Processing Delay
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(a) Two separate oscillators

θrx(t− τ)

θtx(t)

∠aR(t)− 2πfcτ

(b) Reusing single oscillator



Example (2): Short Processing Delay
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(a) Two separate oscillators

θrx(t− τ)

θtx(t)

∠aR(t)− 2πfcτ

(b) Reusing single oscillator



PSD of Repeater Phasor Process
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• Total phase distortion caused by the repeater

aR(t) = arx(t− τ ) · atx(t) =

{

e(2πfcτ+θrx(t−τ)+θtx(t)), two oscillators

e(2πfcτ+θrx(t−τ)−θrx(t)), one oscillator

• ICI is realized through AR[k] which represents instantaneous
spectral spreading for each OFDM symbol

• Standard steps for calculating power spectral density (PSD):
first R(t) = E{aR(t0)a

∗

R(t0 − t)} then S(f) = 1
2π

∫

∞

−∞
R(t)e−2πft dt

⊲ PSD is related to E{|AR[k]|
2}, i.e., expected ICI power

⊲ In the ideal case aR(t) = e2πfcτ yielding S0(f) = δ(f)

(a) Two separate oscillators

S2(f) =
1

π
·

c

c2 + (2πf)2

(b) Reusing single oscillator

S1(f) = e−cτS0(f) + S̃1(f)S2(f)

where
S̃1(f) = 1− e−cτ

(

cos(2πfτ ) + cτ sinc(2πfτ )
)



Numerical Results (1)
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• On the right: PSD when
reusing single oscillator
and f3dB = 100Hz

• Extreme cases for
processing delay:
S1(f) →
{

S0(f), when τ → 0
S2(f), when τ → ∞
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• Except for the impulse at the zero frequency (not visible in the
above figure), the PSD is approximately flat when f < 1

4τ
• When f > 1

4τ , the PSD decays 20dB per decade



Numerical Results (2)
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• On the right: PSD vs.
processing delay when
reusing single oscillator
and f3dB = 100Hz

at 1kHz: Flat PSD
at 1MHz: PSD decays

20 dB per decade

(cf. subcarrier spacing
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• The PSD oscillates less when the processing delay increases
and becomes smooth when τ > 1

4f3dB
(“≈ ∞”)

⊲ However, OFDM symbols are typically shorter than that



Transmission Rate Analysis
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Distribution of ICI Power
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• When reusing a single oscillator, time-domain phase distortion
∠aR(t) can be seen as colored Gaussian noise

• And AR[k] represents aR(t) in frequency domain after sampling
• Using Taylor series expansion, ICI power α =

∑Nc−1
k=1 |AR[k]|2

becomes a sum of correlated gamma random variables

⊲ Coefficients λk depend on f3dB and τ via a covariance matrix!

• Finally, the probability density function (PDF) of α
can be expressed as a weighted sum of gamma PDFs:

p(α) = κ
∞
∑

k=0

ζk pk(α) where pk(α) =
α

Nc−1

2
+k−1e

−
α

λ1

λ
Nc−1

2
+k

1 Γ
(

Nc−1
2 + k

)

⊲ κ =
∏Nc−1

n=1

√

λ1

λn

(probability mass normalization)

⊲ ζ0 = 1 and ζk+1 = 1/2
k+1

∑k+1
i=1

∑Nc−1
j=1

(

1− λ1/λj

)i
ζk+1−i



Average Transmission Rate
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• Repeater gain β2 = (Ptx[n]/σ
2
R)/(γSR[n] + 1) transforms SINR to

γ[n] =
(1− α)γSR[n]γRD[n]

γSR[n] + (αγSR[n] + 1)γRD[n] + 1

• Instantaneous transmission rate is given by

C[n] = log2(1+γ[n]) = log2

(

γSR[n]γRD[n] + γSR[n] + γRD[n] + 1

αγSR[n]γRD[n] + γSR[n] + γRD[n] + 1

)

• Using p(α), average transmission rate can be calculated as

C̄[n] = E{C[n]} = log2

(

1 +
γSR[n]γRD[n]

γSR[n] + γRD[n] + 1

)

− κ
∞
∑

k=0

ζk Ik

where Ik =

∫

∞

0

log2

(

1 +
γSR[n]γRD[n]

γSR[n] + γRD[n] + 1
α

)

pk(α) dα

⊲ Ik can be solved in a closed form using Meijer’s G-function
(or generalized hypergeometric and incomplete gamma functions)



Numerical Results (3)
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• OFDM parameters for
a DVB-T/H-like system:

Nc = 8192 subcarriers
and 8MHz bandwidth
– sample duration: 0.11µs
– FFT duration: 896µs
– subcarrier spacing: 1.1kHz

• Oscillators: f3dB = 100Hz
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it/
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τ = {0.1, 1, 10, 100,∞}µs

γSR[n] = γRD[n] [dB]

• When reusing a single oscillator, transmission rate degradation
can be minimized by decreasing the processing delay

⊲ Implementation with two separate oscillators means τ → ∞



Numerical Results (4)
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• OFDM parameters for
a DVB-T/H-like system:

Nc = 8192 subcarriers
and 8MHz bandwidth
– sample duration: 0.11µs
– FFT duration: 896µs
– subcarrier spacing: 1.1kHz

• Oscillators: f3dB = 100Hz
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γSR[n] = γRD[n] = 25dB

γSR[n] = γRD[n] = 20dB

γSR[n] = γRD[n] = 15dB

γSR[n] = γRD[n] = 10dB

10−8 10−7 10−6 10−5 10−4 10−3 10−2

τ [s]

• If the processing delay is a few tens of OFDM samples or shorter,
the transmit-side noise reverts the effect of receive-side noise

⊲ The delay needs to be shorter than the cyclic prefix anyway



Conclusion
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Conclusion
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• Target: To understand the effect of spectral spreading
on a full-duplex OFDM repeater link due to imperfect oscillator(s)

⊲ Phase noise causes inter-carrier interference (ICI)

• Comparison of two different repeater designs

1. Using a single oscillator signal for down- and upconversion:
Processing delay becomes a key factor for spectral spreading!

2. Separate oscillators for down- and upconversion

• Analysis and numerical results at three abstraction levels

1. Time-domain phase noise realizations vs. processing delay
2. Power spectral density of repeater’s phase distortion process
3. Distribution of ICI power, and average transmission rate

• The transmit-side phase noise can partially revert the effect of
receive-side distortion when processing delay is short enough
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