Sequential compensation of RF impairments in OFDM systems

Fernando Gregorio, Juan Cousseau Universidad Nacional del Sur, Dpto. de Ingeniería Eléctrica y Computadoras, DIEC, IIIE-CONICET, Bahía Blanca, Argentina

Stefan Werner, Risto Wichman and <u>Taneli Riihonen</u> Aalto University School of Science and Technology, Dept. of Signal Processing and Acoustics, Espoo, Finland

Aalto University School of Science and Technology

WCNC 2010 Sydney

Outline

Introduction
 System model
 Sequential compensation technique
 Simulations
 Conclusions

OFDM has gained popularity as a physical layer technique for wideband communication systems

- High spectral efficiency
- Low complexity frequency-domain equalization
- Robustness against multipath channels
- Adaptive data rate
- OFDMA for multiuser systems

Introduction

OFDM systems' challenges

- High PAPR of OFDM signals
 - Nonlinear distortion
 - □ Low power efficiency
 - Interference
- I/Q imbalance
 - Performance reduction
 - Low-cost implementation?
- Carrier frequency offset (CFO)
 - Performance reduction
- Phase noise

Introduction

Low-cost analog implementation techniques suffer from several imperfections:

- Nonlinear response of analog front-end power amplifiers
- Inaccurate local oscillators
- Mismatches in the I and Q branches in directconversion transceivers

These impairments can be compensated in digital domain in a cost effective manner

System model

WCNC 2010 Sydney

Baseband signal after downconversion
 Frequency domain

 $\mathbf{Y}_{bb} = K_1 \left[\mathbf{QCHX}_{pa} + \Upsilon \right] + K_2 \left[\mathbf{QCHX}_{pa} + \Upsilon \right]^{\#}$

Additive noise

` PA output

H is an *N×N* diagonal channel matrix

C and **Q** are *N*×*N* non-diagonal matrices which model CFO and phase noise

-Diagonal elements create common phase error (CPE) -Nondiagonal elements generate intercarrier interference (ICI)

 $X^{\#}(k) = X(-k)^{*}$

Mirror conjugate

Sequential compensation

Initialization: acquisition of IQ imbalance and CFO parameters

A preamble of three OFDM symbols is employed to estimate parameters for distortion of the original transmitted signal

Symbol 1 is a repetitive sequence of length *N* consisting of P identical blocks of length L employed for CFO estimation
IQ imbalance parameters are estimated with the following two symbols
Frank-Zadoff-Chu (FZC) low PAPR sequence

Initialization algorithm

Initialization Algorithm 1: CFO estimation Symbol 1: Repetitive sequence $\hat{\Delta}_f = \frac{1}{2\pi L} \arg \left\{ \sum_{m=0}^{L} \sum_{n=0}^{N-m*P} Y(n) Y^*(mP+n) \right\} [2]$ 2: IO mismatch estimation The received impaired signal can be written as: $Y(k) = K_1 H(k) X(k) + K_2 H^{\#}(k) X^{\#}(k) + V(k)$ $Y(-k) = K_1 H^{\#}(k) X^*(k) + K_2 H^*(k) X^*(k) + V(k)$ Symbol 2: Only subcarriers $k = 1, 2, \dots N/2$ are modulated: $\hat{H}_{iq}^{1}(k) \approx K_{1}H(k) + \frac{V(k)}{X(k)}, \ k = 1, \dots, N/2$ Subcarriers k = N/2 + 1: N are employed to estimate the mirror cascade. $\hat{H}_{iq}^{\#1}(k) = \frac{Y(-k)}{X^*(k)} \approx K_2 H^*(k) + \frac{V(k)}{X(k)} \quad k = N/2 + 1, \dots, N$ Symbol 3: zeros are allocated at $k = 1, 2, \dots N/2$. $\hat{H}_{iq}^2(k)$ and $\hat{H}_{iq}^{\#2}(k)$. are estimated. The cascade for the complete set of subcarriers is obtained as: Channel and IQ imbalance parameters decoupling: $\hat{K}_{1} = \frac{\hat{H}_{iq}(k)}{\hat{H}_{iq}(k) + \hat{H}_{iq}^{\#}(k)}$ $\hat{K}_2 = 1 - K_1^*$ $\hat{H}(k) = \hat{H}_{iq}(k) + \hat{H}_{iq}^{\#}(k)$

Sequential compensation

Sequential compensation

Sequential compensation

Compensation Algorithm

1. **CFO compensation** The CFO is removed from the time-domain received signal: $\tilde{y}_{cfo}(n) = y_{bb}(n)e^{-j\hat{\Delta}fn}$ assuming a perfect CFO estimate $\hat{\Delta}_f = \Delta_f$ The cfo-free signal is: $\tilde{y}_{cfo}(n) = (K_1 e^{j\phi(n)} y(n) + K_2 e^{-j\phi(n)} y(n)^* + v(n))$ 2. IQ imbalance compensation $\begin{bmatrix} \tilde{Y}_{iq}(k) \\ \tilde{Y}_{iq}^{\#}(k) \end{bmatrix} = \begin{bmatrix} \hat{K}_1 & \hat{K}_2 \\ \hat{K}_2^* & \hat{K}_1^* \end{bmatrix}^{-1} \begin{bmatrix} \tilde{Y}_{cfo}(k) \\ \tilde{Y}_{cfo}^{\#}(k) \end{bmatrix}$ The TD IO distortion-free signal: $\tilde{y}_{ia}(n) = e^{j(\phi(n))}y(n) + \upsilon'(n)$ 3. Channel estimation The FD signal after CFO and IQ compensation: $\tilde{Y}_{iq}(k) = H(k)X_{pa}(k)Q(0) + \sum_{\substack{l=0\\l=1}}^{N-1} H(l)X_{pa}(l)C(l-k) + \Upsilon(k)$ $\tilde{Y}_{iq}(k) = H(k)X_{pa}(k)Q(0) + ICI(k) + \Upsilon(k)$ The effective channel frequency response on subcarriers $(k \in \mathcal{T})$: $\hat{H}_{eff}(k) = Y(k)/X(k)$ $\hat{H}_{eff}(k) = H(k)Q(0)K_L + H(k)\frac{D(k)}{X(k)} + \frac{ICI(k) + V(k)}{X(k)}$ 4. NLD removal PANC: At iteration m a) Estimate symbols $\hat{X}^m(k) = \left\langle \frac{Y(k)}{H(k)} - \hat{D}(k) \right\rangle$ b) Time domain $\hat{\mathbf{x}}^m(n) = \mathbf{F}\hat{\mathbf{X}}^m(n)$ c) Estimate distortion term: $\hat{\mathbf{d}}(n) = g[\hat{\mathbf{x}}^m(n)] - \hat{\mathbf{x}}^m(n)$ d) Distortion in frequency domain $\hat{\mathbf{D}}(n) = \mathbf{F}^{\mathrm{H}} \hat{\mathbf{d}}(n)$ e) Refining the channel estimate $\hat{H}(n,k) = \frac{Y(n,k)}{X(n,k) + \hat{D}(n,k)}$ e) New iteration

Simulations

Parameters

- OFDM system: N=256 subcarriers with 16-QAM modulation
- Rayleigh fading channel typical urban (TU) scenario
- Mobile speed 40km/h
- Number of pilot subcarriers: 32
- Power amplifier: soft-limiter with clipping level of 1.6
- Normalized CFO, Δf=0.25
- Local oscillator: PLL with an Integrated Phase Noise Power (IPNP) of -32 dBc with loop bandwidth of 1000 Hz and an error floor of -130 dBc
- Receiver IQ imbalance is assumed frequency-independent with
- a phase and amplitude imbalance of 5 degrees and 5%

WCNC 2010 Sydney

Simulations

□ Bit error rate

BER a) without coding and b) with convolutional coding R=1/2

DIEC

Simulations

Normalized image power gain Quantifies the improvement obtained with the IQ imbalance compensation method

$$G_C = \left| \frac{K_2 \hat{K_1}^* - K_1 \hat{K_2}^*}{K_1 \hat{K_1}^* - K_2 \hat{K_2}^*} \right|^2$$

Normalized image power gain with and without compensation vs. Eb/No including phase noise

WCNC 2010 Sydney

Conclusions

- The proposed method jointly mitigates the effects of IQ imbalance, phase noise, carrier frequency offset and nonlinear distortion
- Analog-domain compensation is a challenging issue due to cost reasons
- □ The proposed baseband digital-domain compensation technique is able to dramatically improve the system performance
- The compensation technique can be used to relax the analog front-end specifications to facilitate a cost-efficient implementation
- Compensation techniques need to attack the overall problem: Previous techniques developed for an isolated impairment do not see the big picture