Performance Evaluation of Relay Deployment Strategies in Multi-Cell Single Frequency Networks

WCNC 2010, Sydney, Australia

Renaud-Alexandre Pitaval1,2, Taneli Riihonen2, Risto Wichman2, and Steven Blostein1

1Department of Electrical and Computer Engineering
Queen’s University, Canada

2Department of Signal Processing and Acoustics
Aalto University School of Science and Technology, Finland
Contents of the Presentation

Goal: to investigate the impact of fixed relay station deployment in a single frequency network (SFN) using orthogonal frequency-division multiplexing (OFDM)

Agenda:
- Context
- System model, OFDM, performance measures
- SFN with relays:
 - Performance with full-duplex (FD) mode
 - Impact of the relay gains
 - Performance with half-duplex (HD) mode
 - HD versus FD
 - Impact of relay topology
 - Performance at the SFN area borders
- Conclusions
Context

• Single frequency network, e.g., MBMS or DVB-T/H
 – Large time dispersion phenomenon

• OFDM
 – Robustness against ISI/ICI

• Deployment of fixed relay stations
 – Increases received signal power
 – But further increases the overall time dispersion in the network

• Relaying methods
 – AF, fixed gain / variable gain
 – Full duplex / Half duplex
OFDM

- OFDM block \(i\) for \(-\nu \leq m \leq N-1\)
 \[s_i[m] = \frac{1}{\sqrt{N}} \sum_{l=0}^{N-1} x_{i,l}e^{j2\pi lm/N} \]

- Demodulation via DFT at the receiver

- For block ‘0’ at the \(n\)th subcarrier
 \[y[n] = x_{0,n}H_{n,n,0} + \sum_{l=0}^{N-1} x_{0,l}H_{l,n,0} + \sum_{i=-\infty}^{+\infty} \sum_{l=0}^{N-1} x_{i,l}H_{l,n,i} + \bar{n}[n] \]

\(ICI \) and \(ISI \)
OFDM: a performance measure

- “Average SINR”: the ratio of average useful power to average interference plus noise power

\[
\Gamma = \frac{\mathcal{E}[S(n)]}{\mathcal{E}[I(n)] + N_0/\sigma_x^2}
\]

- For time-flat multipath channel: \(h(\tau) = \sum_i h_i \delta(\tau - \tau_i) \)
 \(E_i = \mathcal{E}[|h_i|^2] \)

- Average SINR (Steendam and Moeneclaey)

\[
\Gamma = \frac{P_S}{P_I + N_0/\sigma_x^2}
\]

\[
\begin{align*}
P_S &= \mathcal{E}[S[n]] = \sum_i c[i]^2 E_i \\
P_I &= \mathcal{E}[I[n]] = \sum_i (1 - c[i]^2) E_i.
\end{align*}
\]

- Can be used to approximate the ergodic capacity: \(C \approx N \log(1 + \Gamma) \)
Simulator description

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Assumption</th>
</tr>
</thead>
<tbody>
<tr>
<td>Network</td>
<td>5 tiers tri-sector cell</td>
</tr>
<tr>
<td>Bandwidth</td>
<td>10 MHz</td>
</tr>
<tr>
<td>Center frequency</td>
<td>2 GHz</td>
</tr>
<tr>
<td>No. of subcarriers</td>
<td>1024</td>
</tr>
<tr>
<td>No. of occupied subcarriers</td>
<td>601</td>
</tr>
<tr>
<td>Cell synchronization</td>
<td>20μs</td>
</tr>
<tr>
<td>CP</td>
<td>16.67μs</td>
</tr>
<tr>
<td>Relay processing delay</td>
<td>0.5μs</td>
</tr>
<tr>
<td>ISI and ICI modeling</td>
<td>According to [15]</td>
</tr>
<tr>
<td>Beam Tx power</td>
<td>40 Watts / 46 dBm</td>
</tr>
<tr>
<td>Relay Tx power</td>
<td>5 Watts / 37 dBm</td>
</tr>
<tr>
<td>Antenna gain BS</td>
<td>14 dBi</td>
</tr>
<tr>
<td>Antenna gain RS</td>
<td>12 dBi (in total for Rx and Tx)</td>
</tr>
<tr>
<td>Antenna pattern BS</td>
<td>3 sectors</td>
</tr>
<tr>
<td></td>
<td>$A(\theta) = \min \left[12 \left(\frac{\theta}{\theta_{3dB}} \right)^2, A_m \right]$, $\theta_{3dB} = 70^\circ$, $A_m = 20dB$</td>
</tr>
<tr>
<td>Antenna pattern RS</td>
<td>omnidirectional</td>
</tr>
<tr>
<td>Noise figure</td>
<td>9 dB</td>
</tr>
<tr>
<td>Thermal noise</td>
<td>-174 dBm/Hz</td>
</tr>
<tr>
<td>Pathloss BS-MS link and RS-MS link (NLOS, SCM macro)</td>
<td>$PL(dB) = (44.9 - 6.55 \log_{10} h_{bs}) \log_{10}(d[km]) + (35.46 - 1.1h_{ms}) \log_{10}(f_c[MHz]) + 13.82 \log_{10}(h_{bs}) + 0.7h_{ms} + 48.5$</td>
</tr>
<tr>
<td>Pathloss BS-RS link (LOS,IEEE 802.16 type C)</td>
<td>$PL(dB) = -35.4 + 26 \log_{10}(d[m]) + 20 \log_{10}(f_c[MHz])$</td>
</tr>
<tr>
<td>Heights h_{bs}, h_{rs}, h_{ms}</td>
<td>32, 12, 1.5 meters</td>
</tr>
<tr>
<td>Shadowing standard deviation</td>
<td>8 dB for BS-MS and RS-MS link</td>
</tr>
<tr>
<td></td>
<td>4 dB for BS-RS link</td>
</tr>
<tr>
<td>Channel model</td>
<td>BS-MS and RN-MS link</td>
</tr>
<tr>
<td></td>
<td>6 taps TU channel model</td>
</tr>
<tr>
<td></td>
<td>flat Rayleigh channel</td>
</tr>
</tbody>
</table>
Amplify and forward relay channel

- Relay gain
 - Fixed gain
 - Variable gain

- Full-duplex (FD) or half-duplex (HD) transmission mode

\[\beta^{FG} = \sqrt{\frac{\sigma_{rn}^2}{\sigma_{bs}^2 E_{SR} + N_0}} \]

\[\beta^{VG} = \sqrt{\frac{\sigma_{rn}^2}{\sigma_{bs}^2 | h_{SR} |^2 + N_0}} \]
Performance with full-duplex mode

- Received signal:
 \[r_{FD}[k] = h_{eq} * s[k] + n_{eq}[k] \]
 where
 \[h_{eq} = h_{SD} + h_{SRD} \]
 \[n_{eq} = \beta h_{RD} * n_1 + n_2 \]

- Average SINR

\[\Gamma_{FD} = \frac{P_{SFD}}{P_{LFD} + P_{NFD}/\sigma_x^2} \]

\[P_{SFD} = \sum_i c[i]^2 E_i^{eq} \]

\[P_{LFD} = \sum_i (1 - c[i]^2) E_i^{eq} \]

\[P_{NFD} = (\mathcal{E} [\beta^2] E_{RD} + 1) N_0 \]

- depends on the channel distribution with variable gain

with

\[E_i^{eq} = E_i^{sd} + \mathcal{E} \left[|\beta h_{SR}|^2 \right] E_i^{rd} \]
Performance with full-duplex mode

• Fixed gain

\[\mathcal{E} [| \beta_{FG} h_{SR} |^2] = \frac{\sigma_{rn}^2 E_{SR}}{\sigma_{bs}^2 E_{SR} + N_0} \]

\[\mathcal{E} [| \beta_{FG} |^2] = \frac{\sigma_{rn}^2}{\sigma_{bs}^2 E_{SR} + N_0} \]

• Variable gain with Nakagami fading

\[\mathcal{E} [| \beta_{VG} h_{SR} |^2] = \frac{\sigma_{rn}^2 m}{\sigma_{bs}^2} e^{\frac{mN_0}{E_{SR}\sigma_{bs}^2}} \mathbb{E}_{m+1} \left(\frac{mN_0}{E_{SR}\sigma_{bs}^2} \right) \]

\[\mathcal{E} [| \beta_{VG} |^2] = \frac{\sigma_{rn}^2 m}{E_{SR}\sigma_{bs}^2} e^{\frac{mN_0}{E_{SR}\sigma_{bs}^2}} \mathbb{E}_m \left(\frac{mN_0}{E_{SR}\sigma_{bs}^2} \right) \]
Impact of the relay gains

- For a Rayleigh channel \((m=1)\), since \(\frac{1}{x+1} < e^x E_1(x)\) and the average transmit power is constant, we have

 Noise amplification
 \[E\{(|\beta^{FG}|^2) < E\{(|\beta^{VG}|^2) \]

 Signal and interference amplification
 \[E\{(|\beta^{VG}h_{SR}|^2) < E\{(|\beta^{FG}h_{SR}|^2) \]

- Simulations indicate similar performance
Performance with half-duplex mode

- Two diversity branches:

\[
y_{SD}[n] = x_{0,n} \mathcal{H}_{n,n,0}^{sd} + \sum_{l=0}^{N-1} x_{0,l} \mathcal{H}_{l,n,0}^{sd} + \sum_{i=-\infty}^{+\infty} \sum_{l=0}^{N-1} x_{i,l} \mathcal{H}_{l,n,i}^{sd} + \tilde{n}_{SD}[n]
\]

\[
y_{SRD}[n] = x_{0,n} \mathcal{H}_{n,n,0}^{sr} + \sum_{l=0}^{N-1} x_{0,l} \mathcal{H}_{l,n,0}^{sr} + \sum_{i=-\infty}^{+\infty} \sum_{l=0}^{N-1} x_{i,l} \mathcal{H}_{l,n,i}^{sr} + \tilde{n}_{SRD}[n]
\]

- Selection combining
 - Select the signal with the best instantaneous SINR
 - Lower bound on the average SINR

\[
\Gamma_{HD-SC} \geq \max(\Gamma_{SD}, \Gamma_{SRD})
\]
Performance with half-duplex mode

• Equal gain combining:
 The receiver sums up the two signals after co-phasing

\[y_{HD-EGC}[n] = e^{-j\theta_{sd}}y_{SD}[n] + e^{-j\theta_{sr}}y_{SRD}[n] \]

 - Average SINR

\[\Gamma_{HD-EGC} = \frac{P_{SHD-EGC}}{P_{IHDF-EGC} + P_{NHDF-EGC}/\sigma_x^2} \]

with

\[P_{SHD-EGC} = \sum_i c[i]^2 E_i^{eq} + 2E[|h_{n,n,0}|]E[|h_{n,n,0}|] \]

\[P_{IHDF-EGC} = \sum_i (1 - c[i]^2)E_i^{eq} \]

\[P_{NHDF-EGC} = (E[|\beta|^2]E_{RD} + 2)N_0. \]

Useful power with fixed gain

\[P_{SHDF-ECC} = \sum_i c[i]^2 E_i^{eq} + 2\left(\frac{\pi}{4}\right)^{3/2}\sqrt{\sum_i c[i]^2 E_i^{sd}}\sqrt{\sum_i c[i]^2 E_i^{sr}} \]
HD versus FD

• To overcome FD, HD should improve the SINR sufficiently to compensate for the loss of 1/2 in the transmission rate:

\[C_{FD} \approx \log_2(1 + \Gamma_{FD}), \quad C_{HD} \approx \frac{1}{2} \log_2(1 + \Gamma_{HD}) \]

• High SINR

\[C_{FD} \approx \log_2(\Gamma_{FD}) \approx \frac{\ln 10}{10 \ln 2} \Gamma_{FD}[\text{dB}] \]
\[C_{HD} \approx \frac{1}{2} \log_2(\Gamma_{HD}) \approx \frac{1}{2} \frac{\ln 10}{10 \ln 2} \Gamma_{HD}[\text{dB}] \]

The same performance if:

\[\Gamma_{HD}[\text{dB}] = 2\Gamma_{FD}[\text{dB}] \]

• Low SINR

\[C_{FD} \approx \log_2(1 + \Gamma_{FD}) \approx \frac{1}{\ln 2} \Gamma_{FD} \]
\[C_{HD} \approx \frac{1}{2} \log_2(1 + \Gamma_{HD}) \approx \frac{1}{2} \frac{1}{\ln 2} \Gamma_{HD} \]

The same performance if:

\[\Gamma_{HD}[\text{dB}] = \Gamma_{FD}[\text{dB}] + 3\text{dB} \]
HD versus FD

• In our scenario FD outperforms HD
Impact of relay topology

(c) 6 relays per cell

(d) 6 relays per cell

(e) 8 relays per cell

(f) 9 relays per cell

(g) 12 relays per cell

(h) 15 relays per cell

Fix Gain – FD –ISD, 2km

- No Relay
- Scenario (a) – 3 RNs per cell
- Scenario (b) – 3 RNs per cell
- Scenario (c) – 6 RNs per cell
- Scenario (d) – 6 RNs per cell
- Scenario (e) – 8 RNs per cell
- Scenario (f) – 9 RNs per cell
- Scenario (g) – 12 RNs per cell
- Scenario (h) – 15 RNs per cell

CDF vs. SINR[dB]
Impact of relay topology
Performance at the SFN area borders

- Higher performance improvement at the edge of the network than at its center
Conclusions

• Evaluation of some classical relaying methods in a broadcast network using OFDM

• Variable and fixed gain give similar performance

• FD better than HD (but loop interference should be fully cancelled)

• Regular SINR increase with the number of relays in the central cell

• A roughly equidistant relay repartitions give better performance

• Relay deployment increases particularly the performance at the border of two SFNs