

Performance Evaluation of Relay Deployment Strategies in Multi-Cell Single Frequency Networks

WCNC 2010, Sydney, Australia

Renaud-Alexandre Pitaval^{1,2}, <u>Taneli Riihonen</u>², Risto Wichman², and Steven Blostein¹ ¹Department of Electrical and Computer Engineering Queen's University, Canada ²Department of Signal Processing and Acoustics Aalto University School of Science and Technology, Finland

Contents of the Presentation

Goal: to investigate the impact of fixed relay station deployment in a single frequency network (SFN) using orthogonal frequencydivision multiplexing (OFDM)

Agenda:

- Context
- System model, OFDM, performance measures
- SFN with relays:
 - Performance with full-duplex (FD) mode
 - Impact of the relay gains
 - Performance with half-duplex (HD) mode
 - HD versus FD
 - Impact of relay topology
 - Performance at the SFN area borders
- Conclusions

Context

- Single frequency network, e.g., MBMS or DVB-T/H
 - Large time dispersion phenomenon
- OFDM
 - Robustness against ISI/ICI
- Deployment of fixed relay stations
 - Increases received signal power
 - But further increases the overall time dispersion in the network
- Relaying methods
 - AF, fixed gain / variable gain
 - Full duplex / Half duplex

OFDM

• OFDM block #*i* for $-\nu \le m \le N-1$

$$s_i[m] = \frac{1}{\sqrt{N}} \sum_{l=0}^{N-1} x_{i,l} e^{j2\pi \frac{lm}{N}}$$

• Demodulation via DFT at the receiver

• For block '0' at the *n*th subcarrier

$$y[n] = x_{0,n} \mathcal{H}_{n,n,0} + \underbrace{\sum_{\substack{l=0\\l\neq n}}^{N-1} x_{0,l} \mathcal{H}_{l,n,0}}_{ICI} + \underbrace{\sum_{\substack{i=-\infty\\i\neq 0}}^{+\infty} \sum_{l=0}^{N-1} x_{i,l} \mathcal{H}_{l,n,i}}_{ISI} + \tilde{n}[n]$$

OFDM: a performance measure

"Average SINR": the ratio of average useful power to average interference plus noise power
 Independent of the

$$\Gamma = \frac{\mathcal{E}[\mathcal{S}(n)]}{\mathcal{E}[\mathcal{I}(n)] + N_0 / \sigma_x^2}$$

Independent of the subcarrier index if all the subcarriers are modulated

- For time-flat multipath channel: $h(\tau) = \sum_i h_i \delta(\tau \tau_i)$ $E_i = \mathcal{E}[|h_i|^2]$
- Average SINR (Steendam and Moeneclaey)

• Can be used to approximate the ergodic capacity: $C \leq N \log(1 + \Gamma)$

Simulator description

Parameter	Assumption
Network	5 tiers tri-sector cell
Bandwidth	10 MHz
Center frequency	2 GHz
No. of subcarriers	1024
No. of occupied subcarriers	601
Cell synchronization	$20\mu s$
СР	$16.67 \mu s$
Relay processing delay	$0.5 \mu s$
ISI and ICI modeling	According to [15]
Beam Tx power	40 Watts 7 46 dBm
Relay Tx power	5 Watts / 37 dBm
Antenna gain BS	14 dBi
Antenna gain RS	12 dBi (in total for Rx and Tx)
Antenna pattern BS	3 sectors
	$A(\theta) = -\min\left[12\left(\frac{\theta}{\theta_{3dB}}\right)^2, A_m\right]$
Antonno nottom DC	$\theta_{3dB} = 70$, $A_m = 20aB$
Antenna pattern KS	
Thormal noise	9 ub
Dethlogo DS MS link	
and DS MS link	$PL(dB) = (44.9 - 6.55 \log_{10} h_{bs}) \log_{10}(d[km])$
(NI OS SCM macro)	$+(35.46-1.1n_{ms})\log_{10}(f_c[MHz])$
Dethloss PS PS link	$\frac{+13.82 \log_{10}(n_{bs})+0.7n_{ms}+48.5}{DI(dP)-25.4+26 \log (d[m])}$
$(I \cap C) = (I \cap C)$	$FL(aD) = -35.4 \pm 20 \log_{10}(a[m])$
(LOS, IEEE 802.10 type C)	$+20 \log_{10}(J_c[MHz])$
Reights n_{bs}, n_{rs}, n_{ms}	32, 12, 1.5 Ineters
standard deviation	o up ioi po-wio allu ko-wio lilik 4 dP for PS DS link
Channal modal:	4 UD IUI DO-KO IIIK
Reference in the second design of the second design	6 tans TU channel model
DO-IVIO AIIU KIN-IVIO IIIIK BS DN link	flat Payleigh channel
DO-KIN IIIK	nat Kayleigh channel

Amplify and forward relay channel

- Relay gain
 - Fixed gain
- $\beta^{FG} = \sqrt{\frac{\sigma_{rn}^2}{\sigma_{bs}^2 E_{SR} + N_0}} \qquad \beta^{VG} = \sqrt{\frac{\sigma_{rn}^2}{\sigma_{bs}^2 \mid h_{SR} \mid^2 + N_0}}$
- Variable gain
- Full-duplex (FD) or half-duplex (HD) transmission mode

Performance with full-duplex mode

- Received signal: $r_{FD}[k] = h_{eq} * s[k] + n_{eq}[k]$ where $h_{eq} = h_{SD} + h_{SRD}$ $n_{eq} = \beta h_{RD} * n_1 + n_2$
- Average SINR

$$\Gamma_{FD} = \frac{P_{\mathcal{S}_{FD}}}{P_{\mathcal{I}_{FD}} + P_{\mathcal{N}_{FD}}/\sigma_x^2} \begin{cases} P_{\mathcal{S}_{FD}} = \sum_i c[i]^2 E_i^{eq} \\ P_{\mathcal{I}_{FD}} = \sum_i (1 - c[i]^2) E_i^{eq} \\ P_{\mathcal{N}_{FD}} = \left(\mathcal{E} \left[|\beta|^2 \right] E_{RD} + 1 \right) N_0 \end{cases}$$

1

depends on the channel distribution with variable gain

н

$$E_i^{eq} = E_i^{sd} + \mathcal{E}\left[|\beta h_{SR}|^2\right] E_i^{rd}$$

with

Performance with full-duplex mode

• Fixed gain

$$\mathcal{E}\left[\mid\beta^{FG}h_{SR}\mid^{2}\right] = \frac{\sigma_{rn}^{2}E_{SR}}{\sigma_{bs}^{2}E_{SR} + N_{0}} \qquad \mathcal{E}\left[\mid\beta^{FG}\mid^{2}\right] = \frac{\sigma_{rn}^{2}}{\sigma_{bs}^{2}E_{SR} + N_{0}}$$

• Variable gain with Nakagami fading

$$\mathcal{E}\left[\mid\beta^{VG}h_{SR}\mid^{2}\right] = \frac{\sigma_{rn}^{2}m}{\sigma_{bs}^{2}} e^{\frac{mN_{0}}{E_{SR}\sigma_{bs}^{2}}} \operatorname{E}_{m+1}\left(\frac{mN_{0}}{E_{SR}\sigma_{bs}^{2}}\right)$$

$$\mathcal{E}\left[\mid\beta^{VG}\mid^{2}\right] = \frac{\sigma_{rn}^{2}m}{E_{SR}\sigma_{bs}^{2}} e^{\frac{mN_{0}}{E_{SR}\sigma_{bs}^{2}}} \operatorname{E}_{m}\left(\frac{mN_{0}}{E_{SR}\sigma_{bs}^{2}}\right)$$

Impact of the relay gains

• For a Rayleigh channel (m=1), since $\frac{1}{x+1} < e^x E_1(x)$ and the average transmit power is constant, we have

Noise amplification $\mathcal{E}\{|\beta^{^{_{FG}}}|^2\} < \mathcal{E}\{|\beta^{^{_{VG}}}|^2\}$

Signal and interference amplification

 $\mathcal{E}\{|\beta^{\scriptscriptstyle VG}h_{\scriptscriptstyle SR}|^2\} < \mathcal{E}\{|\beta^{\scriptscriptstyle FG}h_{\scriptscriptstyle SR}|^2\}$

• Simulations indicate similar performance

Performance with half-duplex mode

• Two diversity branches:

$$y_{SD}[n] = x_{0,n} \mathcal{H}_{n,n,0}^{sd} + \sum_{\substack{l=0\\l\neq n}}^{N-1} x_{0,l} \mathcal{H}_{l,n,0}^{sd} + \sum_{\substack{i=-\infty\\i\neq 0}}^{+\infty} \sum_{l=0}^{N-1} x_{i,l} \mathcal{H}_{l,n,i}^{sd} + \tilde{n}_{SD}[n]$$
$$y_{SRD}[n] = x_{0,n} \mathcal{H}_{n,n,0}^{srd} + \sum_{\substack{l=0\\l\neq n}}^{N-1} x_{0,l} \mathcal{H}_{l,n,0}^{srd} + \sum_{\substack{i=-\infty\\i\neq 0}}^{+\infty} \sum_{l=0}^{N-1} x_{i,l} \mathcal{H}_{l,n,i}^{srd} + \tilde{n}_{SRD}[n]$$

- Selection combining
 - Select the signal with the best instantaneous SINR
 - Lower bound on the average SINR

$$\Gamma_{HD-SC} \ge \max(\Gamma_{SD}, \Gamma_{SRD})$$

Performance with half-duplex mode

• Equal gain combining:

The receiver sums up the two signals after co-phasing

$$y_{HD-EGC}[n] = e^{-j\theta_{sd}}y_{SD}[n] + e^{-j\theta_{srd}}y_{SRD}[n]$$

$$- \text{ Average SINR} \qquad \Gamma_{HD-EGC} = \frac{P_{\mathcal{S}_{HD-EGC}}}{P_{\mathcal{I}_{HD-EGC}} + P_{\mathcal{N}_{HD-EGC}}/\sigma_x^2}$$
with
$$P_{\mathcal{S}_{HD-EGC}} = \sum_i c[i]^2 E_i^{eq} + 2\mathcal{E} \left[|\mathcal{H}_{n,n,0}^{sd}|\right] \mathcal{E} \left[|\mathcal{H}_{n,n,0}^{srd}|\right]$$

$$P_{\mathcal{I}_{HD-EGC}} = \sum_i (1 - c[i]^2) E_i^{eq} \qquad \text{Differences to FD}$$

$$P_{\mathcal{N}_{HD-EGC}} = (\mathcal{E} \left[|\beta|^2\right] E_{RD} + 2) N_0.$$

Useful power with fixed gain

$$P_{\mathcal{S}_{HD-EGC}} = \sum_{i} c[i]^2 E_i^{eq} + 2\left(\frac{\pi}{4}\right)^{3/2} \sqrt{\sum_{i} c[i]^2 E_i^{sd}} \sqrt{\sum_{i} c[i]^2 E_i^{srd}}$$

HD versus FD

 To overcome FD, HD should improve the SINR sufficiently to compensate for the loss of 1/2 in the transmission rate:

 $\mathcal{C}_{FD} \lesssim \log_2(1 + \Gamma_{FD}), \quad \mathcal{C}_{HD} \lesssim \frac{1}{2} \log_2(1 + \Gamma_{HD})$

High SINR

$$\mathcal{C}_{FD} \lesssim \log_2(\Gamma_{FD}) \approx \frac{\ln 10}{10 \ln 2} \Gamma_{FD} [dB]$$
$$\mathcal{C}_{HD} \lesssim \frac{1}{2} \log_2(\Gamma_{HD}) \approx \frac{1}{2} \frac{\ln 10}{10 \ln 2} \Gamma_{HD} [dB]$$

The same performance if: $\Gamma_{HD}[dB] = 2\Gamma_{FD}[dB]$

Low SINR

$$\mathcal{C}_{FD} \lesssim \log_2(1+\Gamma_{FD}) \approx \frac{1}{\ln 2} \Gamma_{FD}$$
$$\mathcal{C}_{HD} \lesssim \frac{1}{2} \log_2(1+\Gamma_{HD}) \approx \frac{1}{2} \frac{1}{\ln 2} \Gamma_{HD}$$

The same performance if:

 $\Gamma_{HD}[dB] = \Gamma_{FD}[dB] + 3dB$

HD versus FD

• In our scenario FD outperforms HD

Impact of relay topology

(c) 6 relays per cell

(d) 6 relays per cell

(e) 8 relays per cell

(f) 9 relays per cell

(g) 12 relays per cell

(h) 15 relays per cell

Impact of relay topology

Performance at the SFN area borders

 Higher performance improvement at the edge of the network than at its center

Conclusions

- Evaluation of some classical relaying methods in a broadcast network using OFDM
- Variable and fixed gain give similar performance
- FD better than HD (but loop interference should be fully cancelled)
- Regular SINR increase with the number of relays in the central cell
- A roughly equidistant relay repartitions give better performance
- Relay deployment increases particularly the performance at the border of two SFNs