

BEP Analysis of OFDM Relay Links with Nonlinear Power Amplifiers

<u>Taneli Riihonen</u>*, Stefan Werner*, Fernando Gregorio[†], Risto Wichman*, and Jyri Hämäläinen*

*Aalto University School of Science and Technology, Finland †Universidad Nacional del Sur, Argentina

IEEE WCNC 2010, Sydney, Australia

Introduction

Motivation

- Goal: study the effect of nonlinear distortion in OFDM relay links
 - Background: cheap power amplifiers vs. high PAPR in OFDM
- Focus:
 - Fixed infrastructure-based relay node
 - Amplify and forward (AF) protocol
 - Frequency-domain processing

System Model

OFDM Signal with Nonlinear Distortion

Signal model from transmitter $t \in \{S, R\}$ to receiver $r \in \{R, D\}$

- Tx: $X_t[n]$ in frequency domain, $x_t(\tau)$ in time domain
- Nonlinear power amplifier (PA) static and memoryless: $\hat{x}_t(\tau) = f_t(x_t(\tau)) = K_t x_t(\tau) + v_t(\tau)$, i.e., $\hat{X}_t[n] = K_t X_t[n] + V_t[n]$

▷ Power of distortion noise is $\varsigma_t^2 = \frac{1}{P_t} \mathcal{E}\{|V_t[n]|^2\}$

• Multipath channel: $h_{tr}(\tau)$ and in frequency domain $H_{tr}[n]$

• **Rx**:
$$Y_r[n] = K_t H_{tr}[n] X_t[n] + H_{tr} V_t[n] + W_r[n]$$

Two-Hop Amplify-and-Forward OFDM Relay Link

Parallel processing of subcarriers in frequency domain

- Amplification by $\beta[n] = \sqrt{\frac{P_{\rm R}}{(K_{\rm S}^2 + \varsigma_{\rm S}^2)P_{\rm S}|H_{\rm SR}[n]|^2 + \sigma_{\rm R}^2}}$
- End-to-end signal-to-noise ratio (SNR) becomes

$$\gamma[n] = \frac{\frac{K_{\rm S}^2 \gamma_{\rm SR}[n]}{\varsigma_{\rm S}^2 \gamma_{\rm SR}[n]+1} \cdot \frac{K_{\rm R}^2 \gamma_{\rm RD}[n]}{\varsigma_{\rm R}^2 \gamma_{\rm RD}[n]+1}}{\frac{K_{\rm S}^2 \gamma_{\rm SR}[n]}{\varsigma_{\rm S}^2 \gamma_{\rm SR}[n]+1} + \frac{K_{\rm R}^2 \gamma_{\rm RD}[n]}{\varsigma_{\rm R}^2 \gamma_{\rm RD}[n]+1} + 1} \quad \text{where} \quad \begin{cases} \gamma_{\rm SR}[n] = \frac{P_{\rm S}|H_{\rm SR}[n]|^2}{\sigma_{\rm R}^2} \\ \gamma_{\rm RD}[n] = \frac{P_{\rm R}|H_{\rm RD}[n]|^2}{\sigma_{\rm D}^2} \end{cases}$$

Aalto University School of Science and Technology

Multipath Channels

The source and the relay are fixed nodes, and the destination is mobile

• Source–relay channel $h_{\rm SR}(\tau)$: stationary multipath components

- ▷ Practical model: $\gamma_{SR}[n] = \bar{\gamma}_{SR}[n] = \mathcal{E} \{\gamma_{SR}[n]\}$
- ▷ Not necessarily line-of-sight, i.e., $\bar{\gamma}_{SR}[n] \neq \bar{\gamma}_{SR}[m]$
- Relay–destination channel $h_{\rm RD}(\tau)$: Rayleigh fading components
 - ▷ SNR distribution $f_{\gamma_{RD}[n]}(s) = (1/\bar{\gamma}_{RD}[n]) \exp(-s/\bar{\gamma}_{RD}[n])$

BEP Analysis

BEP Derivation

• Reformulate the end-to-end SNR as $\gamma[n] = 2 \frac{\Theta[n]\gamma_{RD}[n]}{\Omega[n]\gamma_{RD}[n]+1}$ in which

$$\begin{split} \Theta[n] &= \frac{1}{2} \frac{K_{\rm S}^2 K_{\rm R}^2 \bar{\gamma}_{\rm SR}[n]}{(K_{\rm S}^2 + \varsigma_{\rm S}^2) \, \bar{\gamma}_{\rm SR}[n] + 1} \\ \Omega[n] &= \frac{\left(K_{\rm S}^2 \varsigma_{\rm R}^2 + \varsigma_{\rm S}^2 K_{\rm R}^2 + \varsigma_{\rm S}^2 \varsigma_{\rm R}^2\right) \bar{\gamma}_{\rm SR}[n] + K_{\rm R}^2 + \varsigma_{\rm R}^2}{(K_{\rm S}^2 + \varsigma_{\rm S}^2) \, \bar{\gamma}_{\rm SR}[n] + 1} \end{split}$$

 Omitting few steps, average bit-error probability (BEP) is calculated as

$$\bar{P}_{e}[n] = \frac{1}{2} - \frac{1}{2\sqrt{\pi}\Omega[n]\bar{\gamma}_{\mathrm{RD}}[n]} \sum_{k=0}^{\infty} \frac{(-1)^{k}\Gamma\left(k + \frac{3}{2}\right)}{k!(k + \frac{1}{2})}$$
$$\times \left(\frac{\Theta[n]}{\Omega[n]}\right)^{k+\frac{1}{2}} U\left(k + \frac{3}{2}, 2, \frac{1}{\Omega[n]\bar{\gamma}_{\mathrm{RD}}[n]}\right)$$

BEP Bounds

- Linear PAs by substituting $K_{\rm S}=K_{\rm R}=1$ and $\varsigma_{\rm S}^2=\varsigma_{\rm R}^2=0$
- Asymptotic lower bounds

▷ First hop limited by distortion: $\bar{P}_e[n] \ge \bar{P}_e^{\bar{\gamma}_{SR} \to \infty}[n]$ with

$$\begin{split} \Theta^{\bar{\gamma}_{\mathrm{SR}}\to\infty}[n] &= \lim_{\bar{\gamma}_{\mathrm{SR}}[n]\to\infty} \Theta[n] = \frac{1}{2} \frac{K_{\mathrm{S}}^2 K_{\mathrm{R}}^2}{K_{\mathrm{S}}^2 + \varsigma_{\mathrm{S}}^2},\\ \Omega^{\bar{\gamma}_{\mathrm{SR}}\to\infty}[n] &= \lim_{\bar{\gamma}_{\mathrm{SR}}[n]\to\infty} \Omega[n] = \frac{K_{\mathrm{S}}^2 \varsigma_{\mathrm{R}}^2 + \varsigma_{\mathrm{S}}^2 K_{\mathrm{R}}^2 + \varsigma_{\mathrm{S}}^2 \varsigma_{\mathrm{R}}^2}{K_{\mathrm{S}}^2 + \varsigma_{\mathrm{S}}^2} \end{split}$$

Simpler bound by linear PAs: $\bar{P}_e^{\bar{\gamma}_{SR} \to \infty}[n] \ge \frac{1}{2} - \frac{1}{2} \sqrt{\frac{\bar{\gamma}_{RD}[n]}{\bar{\gamma}_{RD}[n]+2}}$

Second hop limited by distortion:

$$\bar{P}_e[n] \ge \bar{P}_e^{\bar{\gamma}_{\rm RD} \to \infty}[n] = \frac{1}{2} \mathrm{erfc}\left(\sqrt{\frac{\Theta[n]}{\Omega[n]}}\right) \ge \frac{1}{2} \mathrm{erfc}\left(\sqrt{\frac{\bar{\gamma}_{\rm SR}[n]}{2}}\right)$$

Aalto University School of Science and Technology

Discussion

Soft Limiter PA Model

Transmitter t

• Clipping the amplitude of PA input signal:

$$|\hat{x}_t(\tau)| = f_t\left(|x_t(\tau)|\right) = \begin{cases} \frac{A_t}{\nu_t}|x_t(\tau)|, & |x_t(\tau)| \le \nu_t \sqrt{P_t} \\ A_t \sqrt{P_t}, & |x_t(\tau)| > \nu_t \sqrt{P_t} \end{cases}$$

- ▷ Adjustable input back-off ν_t^2
- PA factors in closed form:

$$K_t = \frac{A_t}{\nu_t} \left(1 - \exp\left(-\nu_t^2\right) + \frac{\sqrt{\pi}\nu_t}{2} \operatorname{erfc}\left(\nu_t\right) \right)$$

$$\varsigma_t^2 = \frac{A_t^2}{\nu_t^2} \left(1 - \exp\left(-\nu_t^2\right) \right) - K_t^2$$

Optimization of Back-off Factors (1)

 $(\nu_{\rm S}^*, \nu_{\rm R}^*) = \arg \min_{(\nu_{\rm S}, \nu_{\rm R})} \bar{P}_e[n]$ subject to $\nu_{\rm S} > 0$, $\nu_{\rm R} > 0$

• Can be decomposed as

$$\nu_{\mathrm{S}}^{*} = \arg\min_{\nu_{\mathrm{S}}} \frac{K_{\mathrm{S}}^{2} \bar{\gamma}_{\mathrm{SR}}[n]}{\varsigma_{\mathrm{S}}^{2} \bar{\gamma}_{\mathrm{SR}}[n] + 1}, \quad \nu_{\mathrm{S}} > 0$$
$$\nu_{\mathrm{R}}^{*} = \arg\min_{\nu_{\mathrm{R}}} \bar{P}_{e}[n] \Big|_{\nu_{\mathrm{S}} = \nu_{\mathrm{S}}^{*}}, \quad \nu_{\mathrm{R}} > 0$$

Fig. 2. Contour plot for $-\log_{10} \left(\bar{P}_e[n]\right)$ in terms of the input back-off factors when $\bar{\gamma}_{\rm SR}[n] = 15$ dB, $\bar{\gamma}_{\rm RD}[n] = 20$ dB, and $A_{\rm S} = A_{\rm R} = 1$. The minimal bit error probability $\bar{P}_e^*[n] = 2.0 \cdot 10^{-2}$ is reached with $\nu_{\rm S}^{*2} = 2.85$ dB and $\nu_{\rm R}^{*2} = 2.18$ dB (marked with *).

Optimization of Back-off Factors (2)

Fig. 3. Contour plots for the optimized input back-off factors and the minimal bit error probability when $A_{\rm S} = A_{\rm R} = 1$. The SNR pair $(\bar{\gamma}_{\rm SR}[n], \bar{\gamma}_{\rm RD}[n])$ considered in Fig. 2 is marked with *.

• Numerical optimization validates the decomposition

Numerical Results (1)

Fig. 4. Average bit error probability when $\bar{\gamma}_{\rm SR}[n] = \bar{\gamma}, \, \bar{\gamma}_{\rm RD}[n] = \bar{\gamma} + 5 \text{dB}$ and $A_{\rm S} = A_{\rm R} = 1$.

 Input back-off adjustment is a trade-off between having closely optimal BEP at low SNR or a low BEP floor at high SNR

Aalto University School of Science and Technology

Numerical Results (2)

Fig. 5. Average bit error probability in terms of the first hop SNR when the second hop SNR $\bar{\gamma}_{\rm RD}[n] = 20$ dB and $A_{\rm S} = A_{\rm R} = 1$.

Fig. 6. Average bit error probability in terms of the second hop SNR when the first hop SNR $\bar{\gamma}_{\rm SR}[n] = 15$ dB (hence $\nu_{\rm S}^{*2} = 2.85$ dB) and $A_{\rm S} = A_{\rm R} = 1$.

- PA nonlinearity causes both SNR loss and higher BEP floors
- The performance is asymmetric: The second hop is more critical

Aalto University School of Science and Technology

Conclusion

Conclusion

- Derivation of closed-form bit error probability expressions
 - Infrastructure-based amplify-and-forward OFDM relay link
 - The effect of nonlinear power amplifiers
 - The performance with ideal linear PAs is a special case
- The results are applicable to any memoryless power amplifier
 - Soft limiter model was selected for the numerical illustrations
- The adjustment of power amplifier input back-offs

Thank you!

Aalto University School of Science and Technology

Taneli Riihonen

OFDM Relays with Nonlinear PAs - 19 / 19