Introduction

- Full-duplex relay a.k.a. on-channel repeater a.k.a. gap filler
 - Patching coverage holes cost-efficiently
 - Boosting cell edge coverage by reducing path losses

- The main technical challenge is the loop interference, i.e., crosstalk between transmission and reception of the relay
 - In practice, spatially-separated transmit and receive antennas are required
 - Classification of countermeasures:
 1) Physical isolation between the relay antennas
 2) Directivity properties of the antennas
 3) Signal processing for loop interference cancellation
 4) Relay gain optimization (NEW in this presentation)

System model

- Standard OFDM transmission
 - Length of the fast Fourier transform T_{FFT}
 - Length of the cyclic prefix T_{CP}
 - Time of reference T_{ref} marks the start of symbol demodulation

- The frequency-selective multipath channels are specified in terms of power-delay profiles (PDPs)
 - The classic (single-)exponential PDP

 \[f_t(t) = f_t(t, g, r, \sigma, \tau) = \frac{1}{\sigma \sqrt{2 \pi}} e^{-\frac{(t - \tau)^2}{2 \sigma^2}} \]

 - Gain $g = \int_{-\infty}^{\infty} f_t(t) dt$, mean delay $\mu = \frac{1}{\int_{-\infty}^{\infty} t f_t(t) dt + \sigma + \tau}$

 - Mean square delay spread $\sigma^2 = \frac{1}{\int_{-\infty}^{\infty} t^2 f_t(t) dt}$

 - The new double-exponential PDP by convolution

 \[f_d(t) = f_d(t, g, r, \sigma, \tau) = \int_{-\infty}^{\infty} f_i(t, g, r, \sigma, \tau) f_i(t - \tau, g, r, \sigma, \tau) dt \]

 - Combined delay $\tau = \tau_1 + \tau_2$, total end-to-end gain $g = \int_{-\infty}^{\infty} f_d(t) dt = g_1 g_2$

- The full-duplex relay with gain G_R
 - The PDP of the channel from transmitter t to receiver r

 \[f_{tr}(t) = \mathcal{F}\{g_{tr}(t)\} = \sum_{i=1}^{N_{RF}} f_i(t, g, r, \sigma, \tau) \]

 - N_{RF} clusters: gain, delay and RMS delay spread of the ith cluster $g_{tr}(i)$, $g_{tr}(i)$ and $\sigma_{tr}(i)$

 - Total channel gain $G_{tr} = \int_{-\infty}^{\infty} f_{tr}(t) dt = \sum_{i=1}^{N_{RF}} g_{tr}(i)$

- The PDP of the loop interference channel $f_{li}(t) = G_R f_{tr}(t - \tau_1)$
 - Simple impulse with gain G_R and delay τ_2, because the main source of loop interference is the direct coupling between the direct transmit and receive antennas

- The end-to-end PDP becomes

 \[f_{li}(t) = \int_{-\infty}^{\infty} f_{li}(t, g, r, \sigma, \tau) dt = \sum_{i=1}^{N_{RF}} g_{li}(i) \]

 - $g_{li}(i)$ includes the ith cluster $g_{li}(i)$, $g_{li}(i)$, $\sigma_{li}(i)$ and $\tau_{li}(i)$

 - The relay gain G_R must be limited by $G_R < \sigma_{li}(i)$

 - Relay receive signal power $P_R G_R + P_L G_L + P_{th}$

 - Transmit power in the source P_s

 - Relay transmit signal power $P_R = (\mu_1^{i+1} + \mu_2^{i+1}) \mu_2^{i+1}$

 - Total signal power in the destination $P_s = P_R G_R + P_L G_L + P_{th}$

 - Total noise power in the destination $P_n = P_R G_R + P_L G_L + P_{th}$

 - Assuming relay receiver noise power P_{th} and destination receiver noise power P_{th}

End-to-end SINR

- Signal-to-interference and noise ratio (SINR) is $\gamma = \frac{P_{sig}}{\sum_{i} P_{int} + P_{noise}}$
 - Useful signal power $P_{sig} = P_R f_{li}(t, g, r, \sigma, \tau) dt$

 - Interference power $P_{int} = P_L f_{li}(t, g, r, \sigma, \tau) dt$

 - Weighting function for OFDM:

 \[c(t) = \max \left\{ 0, \min \left\{ 1, \frac{t - t_{CP}}{T_{ref}} \right\} \right\} \]

 - With large relay gain, the end-to-end PDP decays slowly due to the feedback loop, and more multipath components are transferred outside the cyclic prefix causing interference

 - Interference power may increase faster than the useful signal power

 - The optimal gain

 \[G_{opt}^{RPT} = \arg \max_{G_{opt}} \gamma \]

 - Gain margin approach

 \[G_{opt} = \frac{1}{\Delta_{opt} G_{lim}} \]

 - Margin Δ_{opt} usually 10-15dB

 - Power normalization approach

 \[G_{opt}^{norm} = \frac{P_s}{P_R G_R + P_L G_L + P_{th}} \]

 - Pre-selected transmit power P_s

 \[\Rightarrow \text{Optimization of the relay gain guarantees proper transmit power usage and minimizes the effect of the loop interference} \]