Introduction

● Fundamental classifications:
 – Amplify-and-forward (AF) vs. decode-and-forward (DF)
 – Relaying modes:
 - Full Duplex (FD)
 • Loop interference
 • Fixed infrastructure relays
 • Separate rx and tx antennas
 • Loop cancellation algorithms
 - Half Duplex (HD)
 • Pre-log 1/2 in capacity
 • Mobile relays and cooperative communication
 • Single antenna is enough

What is the benefit of choosing the proper mode? When is the full-duplex mode feasible? How does power allocation affect the performance?

End-to-end capacities

● The system model:
 - Full Duplex:
 \[
 c_{\text{FD}}^S = \log_2 \left(1 + \frac{P_S h_{SR} h_{RD}}{N_0 + P_R h_{RD} h_{SR}} \right)
 \]
 - Half Duplex:
 \[
 c_{\text{HD}}^S = \log_2 \left(1 + \frac{P_S h_{SR} h_{RD}}{P_R h_{RD} h_{SR} + N_0} \right)
 \]

● Power allocation (PA)
 - Uniform power allocation: \(P_S = P_R = 1 \)
 - Individual constraints:
 \[\text{PA}: \left\{ P_S, P_R \right\} = \arg \max_{\left\{ P_S, P_R \right\}} \left\{ c_{\text{PA}}^S \right\} \text{ subject to } p_S \leq 1 \text{ and } p_R \leq 1 \]
 - A sum constraint:
 \[\text{SC}: \left\{ P_S, P_R \right\} = \arg \max_{\left\{ P_S, P_R \right\}} \left\{ c_{\text{SC}}^S \right\} \text{ subject to } p_S + p_R \leq 2 \]
 - Closed-form expressions for \(p_S \) and \(p_R \) in the paper

● Comparison of the relaying modes:

Break-even loop interference

● Two extremes for the trade-off:
 - \(C_{\text{FD}}^S = 2C_{\text{HD}}^S \) with protocol \(\pi \in \{ \text{AF, DF} \} \) if \(\gamma_{11} = 0 \)
 - \(C_{\text{FD}}^S / C_{\text{HD}}^S \) is continuous and monotonically decreasing
 - \(\lim_{\gamma_{11} \to \infty} C_{\text{FD}}^S / C_{\text{HD}}^S = 0 \)
 - There exists a break-even loop interference level \(\gamma_{11} = \gamma_{11}^{\text{BE}} \)

Determine \(\gamma_{11}^{\text{BE}} \) for protocol \(\pi \in \{ \text{AF, DF} \} \) such that \(C_{\text{FD}}^S \geq C_{\text{HD}}^S \) if and only if \(\gamma_{11} \leq \gamma_{11}^{\text{BE}} \)

● Uniform power allocation \((\gamma_{11} \geq 1 - 0 \text{dB}) \)
 - Amplify-and-forward: \(t_{\text{AF}} = 1 - \frac{1}{\frac{1}{2} + \frac{1}{2} + \frac{1}{2} + 1} \)
 - Decode-and-forward: \(t_{\text{DF}} = \frac{1}{\frac{1}{2} + \frac{1}{2} + \frac{1}{2} + 1} \)

● Power allocation with individual constraints
 - Amplify-and-forward \(t_{\text{AF}}^{\text{ind}} \)
 \[\gamma_{11}^{\text{BE}} = \gamma_{11}^{\text{BE}} \left\{ \frac{1}{\frac{1}{2} + \frac{1}{2} + \frac{1}{2} + 1} \right\} \]
 - Decode-and-forward \(t_{\text{DF}}^{\text{ind}} \)
 \[\gamma_{11}^{\text{BE}} = \gamma_{11}^{\text{BE}} \left\{ \frac{1}{\frac{1}{2} + \frac{1}{2} + \frac{1}{2} + 1} \right\} \]

● Power allocation with a sum constraint
 - Amplify-and-forward \(t_{\text{AF}}^{\text{sum}} \)
 \[\gamma_{11}^{\text{BE}} = \gamma_{11}^{\text{BE}} \left\{ \frac{1}{\frac{1}{2} + \frac{1}{2} + \frac{1}{2} + 1} \right\} \]
 - Decode-and-forward \(t_{\text{DF}}^{\text{sum}} \)
 \[\gamma_{11}^{\text{BE}} = \gamma_{11}^{\text{BE}} \left\{ \frac{1}{\frac{1}{2} + \frac{1}{2} + \frac{1}{2} + 1} \right\} \]

Illustration of above expressions:

Contour plots for the capacity ratio \(\frac{C_{\text{HD}}^S}{C_{\text{FD}}^S} \) when \(\gamma_{11} = \text{dB} \) in the full-duplex mode.
Contour plots for the break-even loop interference level \(\gamma_{11}^{\text{BE}} \) when \(\gamma_{11} = \text{dB} \).