Introduction

- M parallel amplify-and-forward relays:
 - Frequency-selective multipath channels
 - OFDM signal, all multipaths within the cyclic prefix

- Benefits from spatial diversity by coherent combining, i.e., by inducing appropriate phase shifts in the relays
 - Previously considered with the half-duplex mode
 - Symbol-by-symbol forwarding
 - Co-phasing is trivial in the frequency domain
 - Suitable for mobile relays, user cooperation
 - The full-duplex mode is more spectrally efficient
 - Sample-by-sample forwarding within the cyclic prefix
 - Requires countermeasures against loop interference
 - Suitable for fixed, infrastructure-based relays
 - Frequency domain processing is not possible
 - Can co-phasing be implemented also in full-duplex relays?

System model

- Amplification with linear filters $B_m(\omega)$ in the relays:

 $R_m(\omega) = H_{SD}(\omega)X(\omega) + N_m(\omega)$

 $T_m(\omega) = B_m(\omega)R_m(\omega)$

- The destination receives a superposition of signals:

 $Y(\omega) = \left[H_{SD}(\omega) + \sum_{m=1}^{M} H_{mD}(\omega) B_m(\omega) H_{Sm}(\omega) \right] X(\omega)$

 $\Rightarrow \sum_{m=1}^{M} H_{mD}(\omega) B_m(\omega) N_m(\omega) + N_D(\omega)$

- Incoherent relaying with $B_m(\omega) = 1$

- Diversity gain by designing each $B_m(\omega)$ such that

 $|H(\omega)| \approx |H_{SD}(\omega)| + \sum_{m=1}^{M} |H_{Sm}(\omega)| |H_{mD}(\omega)|$

- Desired phase response at the kth subcarrier (1 ≤ k ≤ K):

 $\Theta_m(\omega_k) = \angle H_{SD}(\omega_k) - \angle H_{Sm}(\omega_k) H_{mD}(\omega_k)$

- Power allocation between the subcarriers is not considered

Filter design

- We need to design

 $B_m(\omega) = \left[1, e^{-j\omega}, \ldots, e^{-jN_{\omega}} \right] \left[b_m[0], b_m[1], \ldots, b_m[N] \right]^T$

 that approximates the response

 $D_m(\omega_k) = e^{j\Theta_m(\omega_k)}$

 → Allpass filters: controllable phase and uniform gain

- FIR approximation of the ideal IIR allpass structure
 - Fixed-length impulse response, stability
 - No strict requirements for phase response or flat magnitude
 - We can apply the design method of complex FIR eigenfilters

- The error function by modifying the LS criterion:

 $E_m = \sum_{k=1}^{K} \left| D_m(\omega_k) b_m(\omega_k) - B_m(\omega_k) \right|^2 = b_m^H Q_m b_m$

 is quadratic with

 $Q_m = \sum_{k=1}^{K} \left[D_m(\omega_k) c(\omega_k) - c(\omega_k) \right]^* \left[D_m(\omega_k) c(\omega_k) - c(\omega_k) \right]^T$

 \Rightarrow Rayleigh’s principle: E_m minimized by selecting b_m as the eigenvector corresponding to the smallest eigenvalue of Q_m

 - Example: Combining coherently transmission of a single relay with the direct transmission

Simulation results

- Outage probability simulations
 - SR and RD channels: 4 uniform Rayleigh-fading taps
 - SD channel: 15 uniform Rayleigh-fading taps, SNR is 6 dB below SR and RD link SNRs
 - $K = 500$, $N = 30$